AP POLYCET MATHEMATICS Multiple Choice Questions (MCQs)
AP POLYCET Mathematics - Matrices MCQs
AP POLYCET Mathematics - Matrices: Multiple Choice Questions
-
What is the order of the matrix \( A = \begin{pmatrix} 3 & 5 & 7 \\ 2 & 4 & 6 \end{pmatrix} \)?
a) 2 x 3
b) 3 x 2
c) 3 x 3
d) 2 x 2
Answer: a) 2 x 3
-
If \( A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \) and \( B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \), what is \( A + B \)?
a) \( \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix} \)
b) \( \begin{pmatrix} 6 & 8 \\ 6 & 8 \end{pmatrix} \)
c) \( \begin{pmatrix} 5 & 7 \\ 10 & 12 \end{pmatrix} \)
d) \( \begin{pmatrix} 1 & 2 \\ 7 & 8 \end{pmatrix} \)
Answer: a) \( \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix} \)
-
Which of the following matrices is the identity matrix for 2 x 2 matrices?
a) \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)
b) \( \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \)
c) \( \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \)
d) \( \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \)
Answer: a) \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)
-
What is the determinant of the matrix \( A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \)?
a) -2
b) 2
c) 4
d) -4
Answer: a) -2
-
If \( A \) is a 3 x 3 matrix and \( B \) is a 3 x 3 matrix, which of the following is true about the multiplication \( AB \)?
a) The product is a 3 x 3 matrix.
b) The product is a 2 x 2 matrix.
c) The product is not possible.
d) The product is a 3 x 2 matrix.
Answer: a) The product is a 3 x 3 matrix.
-
Which of the following is the inverse of the matrix \( A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \)?
a) \( \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix} \)
b) \( \begin{pmatrix} -4 & 3 \\ 1 & -2 \end{pmatrix} \)
c) \( \begin{pmatrix} -2 & 3 \\ 1 & 4 \end{pmatrix} \)
d) \( \begin{pmatrix} 4 & 3 \\ 1 & -2 \end{pmatrix} \)
Answer: a) \( \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix} \)
-
What is the trace of the matrix \( A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \)?
a) 15
b) 12
c) 9
d) 5
Answer: a) 15
-
If the matrix \( A \) is symmetric, what is true about its elements?
a) \( a_{ij} = a_{ji} \)
b) \( a_{ij} = -a_{ji} \)
c) \( a_{ij} = 0 \)
d) \( a_{ij} \neq a_{ji} \)
Answer: a) \( a_{ij} = a_{ji} \)
-
Which of the following matrices is a diagonal matrix?
a) \( \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \)
b) \( \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \)
c) \( \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \)
d) \( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \)
Answer: a) \( \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \)
-
What is the result of multiplying any matrix by the identity matrix?
a) The matrix itself
b) A zero matrix
c) A matrix of ones
d) A scalar matrix
Answer: a) The matrix itself
-
Which of the following is not a property of matrix multiplication?
a) Matrix multiplication is associative.
b) Matrix multiplication is commutative.
c) Matrix multiplication is distributive.
d) Matrix multiplication has an identity element.
Answer: b) Matrix multiplication is commutative.
-
What is the rank of the matrix \( A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \)?
a) 2
b) 1
c) 0
d) 3
Answer: b) 1
-
What is the inverse of a matrix \( A \) if \( A \) is a 2 x 2 matrix and its determinant is 0?
a) The inverse exists.
b) The inverse does not exist.
c) The inverse is a zero matrix.
d) The inverse is the identity matrix.
Answer: b) The inverse does not exist.
-
Which of the following is a property of the determinant of a matrix?
a) The determinant of a matrix is always positive.
b) The determinant of a matrix is always zero.
c) The determinant is multiplicative.
d) The determinant is non-zero for all matrices.
Answer: c) The determinant is multiplicative.
-
Which of the following represents the matrix transpose of \( A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \)?
a) \( \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \)
b) \( \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \)
c) \( \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \)
d) \( \begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix} \)
Answer: a) \( \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \)
 
<< Previous Page
l
Next Page >>
Note/Caution: studentsbizz.com does not promise a job or an interview in exchange for money. Fraudsters may ask you to pay under the pretext of a registration fee or refundable fee, but please be aware that legitimate employers will not require such payments.