I B. Tech I Semester Regular Examinations, April- 2022 MATHEMATICS-I

(Com. to All Branches)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

Unit - I

1. a) Examine the convergence of $\sum \left[\frac{1.4.7....(3n-2)}{3.6.9....3n} \right]^2$. (7M)

b) If $f(x) = \log x$ and $g(x) = x^2$ in [a, b] with b > a > 1, using Cauchy's theorem prove (7M) that $\frac{\log b - \log a}{b - a} = \frac{a + b}{2c^2}$.

OR

2. a) Examine the convergence of $\frac{3}{5} - \frac{5}{7} + \frac{7}{10} - \frac{9}{13} + \dots$ (6M)

b) Find Maclaurin's series expansion of the $f(x) = \sin^2 x$ about x=1. (8M)

Unit - II

3. a) Solve $\frac{dy}{dx} - 2\frac{y}{x} - \frac{5x^2}{(x+2)(3-2x)} = 0.$ (7M)

b) Suppose that an object is heated to 300°F and allowed to cool in a room whose air temperature is 80°F, if after 10 minutes the temperature of the object is 250°F, what will be its temperature after 20 minutes.

OR

4. a) Find the orthogonal trajectories of $r^2 = a \sin 2\theta$. (7M)

b) Solve $(5x^4 + 3x^2y^2 - 2xy^3)dx + (2x^3y - 3x^2y^2 - 5y^4)dy = 0.$ (7M)

Unit - III

5. a) $Solve(D^2 + 3D + 2)y = e^{-x} + cosx.$ (7M)

b) Solve $x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$. (7M)

OR

6. a) In an L-C-R circuit, the charge q on a plate of a condenser is given by (7M)

 $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = Esinpt.$

The circuit is tuned to resonance so that $q^2=1/LC$. If initially the current I and the charge q be zero, find the current in the circuit.

b) Solve $(D^2 + 4^2)y = \tan 2x$, by the method of Variation of parameters. (7M)

Unit - IV

- 7. a) Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. (7M) If dependent find the relationship between them.
 - Expand the function $f(x, y) = xy^2 + \cos(xy)$ in powers of (x 1) and $\left(y \frac{\pi}{2}\right)$. (7M)

OR

- 8. a) Find the extreme values of the function f(x, y) = xy(a x y). (8M)
 - b) Find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ using Euler's theorem for the function $u = \log \left(\frac{x^2 + y^2}{xy} \right)$. (6M)

Unit - V

- 9. a) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} x^2 y^2 (x+y) dy dx.$ (7M)
 - b) Find the area bounded by the curve = 2, $4y = x^2$ and y = 4. (7M)

OR

- By transforming into polar coordinates, evaluate $\iint \frac{x^2 y^2}{x^2 + y^2} dx dy$ over the annular region between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$, with b>a. (7M)
 - b) By changing the order of integration, evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 x^2}} \sqrt{a^2 x^2 y^2} \, dy dx.$ (7M)

I B. Tech I Semester Regular Examinations, April - 2022 MATHEMATICS-I

(Com. to All Branches)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

Unit - 1

1. a) Discuss the convergence of $\frac{x}{1.3} + \frac{x^2}{3.5} + \frac{x^3}{7.9} + ...(x > 0)$. (7M)

b) Find the region in which $f(x) = 1 - 4x - x^2$ is increasing and the region in which it is decreasing using Mean Value Theorem. (7M)

OR

2. a) Examine the convergence of $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$ (7M)

b) Expand $\tan^{-1} x$ in powers of (x - 1) up to fourth degree term. (7M)

Unit - II

3. a) Solve $\cosh x \frac{dy}{dx} + y \sinh x = 2 \cosh^2 x \sinh x$. (7M)

b) A metal ball is heated to a temperature of 100^{0} C and at time t = 0 it is placed in water which is maintained at 40^{0} C. If the temperature of the ball reduces to 60^{0} C in 4 minutes, find the time at which the temperature of the ball is 50^{0} C.

OR

4. a) Find the orthogonal trajectories of the family of curves $x^{2/3} + y^{2/3} = a^{2/3}$ where 'a' is (7M) the parameter.

b) Solve $(xy \sin xy + \cos xy) y dx + (xy \sin xy - \cos xy) x dy = 0.$ (7M)

Unit - III

5. a) Solve $(D^3 - 3D^2 + 4)y = e^{2x} + 6 + 80\cos 2x$. (7M)

b) Solve $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$ (7M)

OR

6. a) The charge q(t) on the capacitor is given by the differential equation $10\frac{d^2q}{dt^2} + 120\frac{dq}{dt} + 1000q = 17sin(2t).$ At initial time the current is zero and the charge on the capacitor is 0.0005 coulomb. Find the charge on the capacitor for t>0.

b) Solve $(D^2 + 4)y = Sec2x$, by the method of Variation of parameters. (7M)

SET - 2

Unit - IV

- 7. a) Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. (7M) If dependent find the relationship between them.
 - b) Expand $f(x, y) = e^{x+y}$ in the neighborhood of (1, 1). (7M)

OR

- 8. a) Find the extreme values of the function $f(x, y) = x^2y + y^2 + x^4$. (7M)
 - b) Find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ using Euler's theorem for the function $u = \log \left(\frac{x^2 + y^2}{x + y} \right)$. (7M)

Unit - V

- 9. a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 x^2}} \sqrt{a^2 x^2 y^2} dy dx$. (7M)
 - b) Find the area bounded by the parabola $y^2 = 4ax$ and its latus rectum. (7M)

OR

- By changing the order of integration, evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) dx dy.$ (7M)
 - b) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 x^2}} \sqrt{x^2 + y^2} \, dy dx$ by changing into polar coordinates. (7M)

I B. Tech I Semester Regular Examinations, April - 2022 MATHEMATICS-I

(Com. to All Branches)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

Unit - I

1. a) Examine the convergence $\sum \frac{1}{(n^{3/2} + n + 1)}$. (7M)

b) Verify Lagrange's mean value theorem for $f(x) = x^3 - x^2 - 5x + 3$ in [0,4]. (7M)

OR

2. a) Test for convergence of $1 - \frac{x^2}{2!} + \frac{x^4}{4} - \frac{x^6}{6!} + \dots (0 < x < 1)$. (7M)

b) Find Taylor's series expansion of the $f(x) = \cos x$ about $x = \frac{\pi}{3}$. (7M)

Unit - II

3. a) Solve $(1-x^2)\frac{dy}{dx} + xy = y^3 \sin^{-1} x$. (7M)

b) If the air is maintained at 30° C and the temperature of the body cools from 80° C to (7M) 60° C in 12 minutes, find the temperature of the body after 24 minutes.

OR

4. a) Find the orthogonal trajectories of $r = a(1 - \cos \theta)$. (7M)

b) Solve $(y\cos x + \sin y + y)dx + (\sin x + x\cos y + x)dy = 0.$ (7M)

Unit - III

5. a) $Solve(D^2 - 3D + 2)y = 2x^2$. (7M)

b) Solve $(2x+3)^2 \frac{d^2 y}{dx^2} - (2x+3)\frac{dy}{dx} - 12y = 6x$. (7M)

OR

6. a) Solve $(D^2 - 3D + 2)y = 2x^2$. (7M)

b) Solve $(D^2 + 1)y = \csc x$ by the method of Variation of parameters. (7M)

Unit - IV

7. a) Check whether $u = \frac{x^2 - y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the relation between them. (7M)

b) Expand $e^x \cos y$ by Taylor's theorem about the point $\left(1, \frac{\pi}{4}\right)$ up to the second degree terms. (7M)

OR

- 8. a) Find the extreme values of the function $f(x, y) = x^3 + 3xy^2 15x^2 + 72x 15y^2$. (7M)
 - Find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ using Euler's theorem for the function $u = \sin^{-1} \left(\frac{x}{y} \right) + \tan^{-1} \left(\frac{y}{x} \right)$. (7M)

Unit - V

- 9. a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dydx}{1+x^2+y^2}$. (7M)
 - b) Find the area bounded by pair of curve y = 2 x and $y^2 = 2(2 x)$. (7M)

 OR
- By changing the order of integration, evaluate $\int_{0}^{1} \int_{1}^{2-x} xy dx dy.$ (7M)
 - b) Using spherical polar coordinates, evaluate $\iiint xyz \, dx \, dy \, dz$ taken over the volume bounded by the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant. (7M)

SET - 4

I B. Tech I Semester Regular Examinations, April - 2022 MATHEMATICS-I

(Com. to All Branches)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

Unit - I

1. a) Test for convergence of $1 + \frac{3}{7}x + \frac{3.6}{7.10}x^2 + \frac{3.6.9}{7.10.13}x^3 + \dots$ (7M)

b) Prove using Mean Value Theorem $|\sin u - \sin v| \le |u - v|$. (7M)

OR

2. a) Examine the convergence of $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ (x > 0)

b) Find the MacLaurin's expansion of $\log(1+e^x) = \log 2 + \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{192} + \dots$ (7M)

Unit - II

3. a) Solve $\frac{dy}{dx} + \frac{y}{x \log x} = \frac{\sin 2x}{\log x}$. (7M)

b) In 20 minutes, a body changes its cools from 80°C to 60°C, and the temperature of air being 40°C. What will be the temperature of the body after 40 minutes from the original?

OR

4. a) Find the orthogonal trajectories of the family of curves: $r^n = a^n \sin n\theta$. (7M)

b) Solve $(2xy + y - \tan y)dx + (x^2 - x\tan^2 y + \sec^2 y)dy = 0.$ (7M)

Unit - III

5. a) $Solve(D^3 - 4D^2 - D + 4)y = e^{3x}cos2x$. (7M)

b) Solve $(x+1)^2 \frac{d^2y}{dx^2} + (x+1)\frac{dy}{dx} + y = \sin(2\log(1+x))$ OR

6. a) Solve $(D^2 + D)y = x^2 + 2x + 4$. (7M)

b) Solve $(D^2 - 2D + 1)y = e^x \log x$, by method of variation of parameters. (7M)

Unit - IV

7. a) Check whether $u = x^2 e^{-y} \cosh z$, $v = x^2 e^{-y} \sinh z$, $w = x^2 + y^2 + z^2 - xy - yz - zx$ are functionally dependent. If dependent find the relationship between them.

- b) Expand the function $f(x, y) = \tan^{-1}(xy)$ in powers of (x 1) and (y + 1). (7M)

 OR
- 8. a) Find the minimum distance from the point (1, 2, 0) on to the cone $z^2 = x^2 + y^2$. (7M)
 - Find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ using Euler's theorem for the function $u = \cos^{-1} \left(\frac{x + y}{\sqrt{x} + \sqrt{y}} \right)$. (7M)

Unit - V

- 9. a) Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} dx dy dz.$ (7M)
 - b) Find the area lying between the circle $x^2 + y^2 = a^2$ and the plane x + y = a in the first quadrant. (7M)

OR

- By changing the order of integration, evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) dx dy.$ (7M)
 - b) Using spherical polar coordinates, evaluate $\iiint \frac{xyz \, dxdydz}{\sqrt{x^2 + y^2 + z^2}}$ taken over the volume (7M) Bounded by the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant.