101

I B. Tech I Semester Regular/Supplementary Examinations, February - 2023

		MATHEMATICS-I	
Time: 3 hours Max. Marks:			
		Answer any FIVE Questions ONE Question from Each Unit All Questions Carry Equal Marks	
		UNIT - I	
1.	a)	Examine the convergence of $\frac{2^{n+1}-2}{n+1}x^n$ for x > 0.	[7M]
	b)	Fine the Maclaurin series expansion of $f(x) = coshx$.	[7M]
		(OR)	
2.	a)	Show that $\log(1+x) = \frac{x}{(1+\theta x)}$ where $0 < \theta < 1$ and hence deduce that $\frac{x}{1-x} < \theta$	[7M]
	b)	ln (1 + x) < x if x > a. Examine the convergence of $\sum_{n=0}^{\infty} (-1)^n (n+1) x^n$ with $x > \frac{1}{2}$.	[7M]
		UNIT - II	
3.	a)	Solve $3y' + xy = xy^{-2}$.	[7M]
	b)	If a substance cools from 370k to330k in 10minutes, when the temperature of the surrounding air is 290k, find the temperature of the substance after 40 minutes.	[7M]
		(OR)	
4.	a)	Show that the family of parabolas $y^2 = 4cx + 4c^2$ is "self-orthogonal". (Where c is a parameter).	[7M]
	b)	Solve $(2y^2 + 4x^2y)dx + (4xy + 3x^3)dy = 0.$	[7M]
		UNIT - III	
5.	a)	Solve $(D^3 - 2D + 4)y = x^4 + 3x^2 - 5x + 2$.	[7M]
	b)	Determine the current $I(t)$ in an <i>RLC</i> circuit with <i>emf</i> $E(t) = E_0 \cos \omega t$.	[7M]
		(OR)	
6.	a)	Solve $(D^2 + 1)y = x\cos 2x$ by the method of variation of parameters.	[7M]
	b)	Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 sin(log x)$. UNIT - IV	[7M]
7.	a)	If $w = x^2 v + v^2 z + z^2 x$, then prove that $w_x + w_y + w_z = (x + v + z)^2$.	[7M]
	b)	Investigate the maxima and minima, if any, of the function $f(x, y) = x^4 + y^4 - x^2 - y^2 + 1$	[7M]
		(OR)	
8.	a)	Determine whether the following functions are functionally dependent or not? Find a functional relation between them in case they are functionally dependent. $u = \frac{x+y}{x-y}, v = \frac{xy}{(x-y)^2}$.	[7M]

b) Expand $f(x, y) = e^{y} ln(1 + x)$ in powers if x and y. [7M]

|""|"|"|"||

UNIT - V

- 9. a) Evaluate $\iint_D (1 + x + y) dx dy$ where D is the region bounded by y = x, x = [7M] $\sqrt{y}, y=1$ and y=0.
 - b) Change the order of integration and then evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$. [7M]

(OR)

10 a) Evaluate
$$\int_{0}^{2} \int_{1}^{z} \int_{0}^{yz} xyz \, dx \, dy \, dz.$$
 [7M]

b) Evaluate
$$\int_0^{2a} \int_0^{\sqrt{2a-x^2}} dy dx$$
 by changing into polar coordinates. [7M]

I B. Tech I Semester Regular/Supplementary Examinations, February - 2023 MATHEMATICS-I

		(Common to All Branches)				
ſ	Time: 3 hours Max. Marks: 7					
Answer any FIVE Questions ONE Question from Each Unit						
		All Questions Carry Equal Marks				
		UNIT - I				
1.	a)	Examine the convergence of $\left[\frac{n}{n^2+1}\chi^{2n}\right]^{\frac{1}{2}}$.	[7M]			
	b)	State Maclaurin's theorem with Lagrange's form of remainder for $f(x) = Cos x$.	[7M]			
		(OR)				
2.	a)	Using Lagrange's Mean Value theorem prove that $\frac{\pi}{3} - \frac{1}{5\sqrt{3}} > \cos^{-1}\frac{3}{5} > \frac{\pi}{3} - \frac{1}{8}$.	[7M]			
	b)	Examine the convergence of $\sum_{n=2}^{\infty} \frac{(-1)^{n-1} x^n}{n(n-1)}$ with $0 < x < 1$.	[7M]			
		UNIT - II				
3.	a)	Solve $2xyy' = y^2 - 2x^3$.	[7M]			
	b)	Water at temperature 100 ⁰ C cools in 10 min to 80 ⁰ C in a room of temperature 25 ⁰ C. (i) Find the temperature of water after 20 min. (ii) When will the temperature be 40 ⁰ C.	[7M]			
		(OR)				
4.	a)	Show that the family of confocal conics $\frac{x^2}{a^2+c} + \frac{y^2}{b^2+c} = 1$ is "self-orthogonal". Here <i>a</i> and <i>b</i> are given constants.	[7M]			
	b)	Solve $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0.$	[7M]			
		UNIT - III				
5.	a)	Solve $(D^4 + D^3 + D^2)y = 5x^2 + sin^2x + 4e^{-3x}$	[7M]			
	b)	Determine the current $I(t)$ in an <i>RLC</i> circuit with <i>emf</i> $E(t) = E_0 sin \omega t$.	[7M]			
	(OR)					
6.	a)	Solve $(D^2 + 4)y = 4sec2x$ by the method of variation of parameters.	[7M]			
	b)	Solve $x^3y''' + 2x^2y'' = x + sin(ln x)$.	[7M]			
	UNIT - IV					
7.	a)	Prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$ if $u = ln(x^3 + y^3 + z^3 - 3xyz)$.	[7M]			
	b)	Investigate the maxima and minima, if any, of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.	[7M]			
		1 62				

(**OR**)

- 8. a) Determine whether the following functions are functionally dependent or not? [7M] Find a functional relation between them in case they are functionally dependent. $u = \frac{x-y}{x+a}$, $v = \frac{x+a}{y+a}$ where a is constant.
 - b) Find Taylor's expansion of $f(x, y) = cot^{-1}xy$ in powers of (x + 0.5) and [7M] (y 2) up to second degree terms.

UNIT - V

- 9. a) Evaluate $\iint_D (x^2 + y^2) dx dy$ where *D* is the region bounded by $y = x, y^2 = x$ and [7M] x=1 in the first quadrant.
 - b) Change the order of integration and then evaluate $\int_0^2 \int_{y^3}^{4\sqrt{2y}} y^2 dx dy$. [7M] (OR)

¹⁰ a) Evaluate
$$\int_0^a \int_0^x \int_0^{y+x} e^{x+y+z} dz dy dx.$$
 [7M]

b) Evaluate $\int_0^a \int_0^{\sqrt{a^2 - y^2}} (x^2 + y^2) dx dy$ by changing into polar coordinates. [7M]

I B. Tech I Semester Regular/Supplementary Examinations, February - 2023 MATHEMATICS-I

(Common to All Branches) Time: 3 hours Max. Marks: 70 Answer any FIVE Questions ONE Question from Each Unit All Questions Carry Equal Marks UNIT - I Examine the convergence of $\frac{1.3.5...(2n-1)}{2.4.6...2n} x^{n-1}$ with x > 0. 1. a) [7M] b) Verify Taylor's theorem for $f(x) = x^3 - 3x^2 + 2x$ in $\left[0, \frac{1}{2}\right]$ with Lagrange's [7M] remainder up to 2 terms. (OR)Show that $0 < \sin b - \sin a < b - a$ if $0 < a < b < \frac{\pi}{2}$. 2. a) [7M] Examine the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(x+n)}$. b) [7M] UNIT - II 3. a) Solve $(xy^5 + y)dx - dy = 0$. [7M] b) Water at temperature 10° C takes 5 min to warm up to 20° C in a room at [7M] temperature 40° C. Find the temperature after 20 min and after $\frac{1}{2}$ hr. (**OR**) Show that the family of parabolas $y^2 = 2cx + c^2$ is "self-orthogonal". (where c is [7M] 4. a) a parameter). b) Solve $(y^4 + 2y)dx + (xy^3 + 2y^4 - 4x)dy = 0$. [7M] UNIT - III 5. a) Solve $(D^4 + 2D^3 - 3D^2)y = 5x^2 + 7e^{2x} + 4cosx$. [7M] b) A circuit consists of inductance of 0.05 henrys, a resistance of 5 ohms and a [7M] condenser of capacitance 4×10^{-4} farad. If Q = I = 0 when t = 0, find Q(t) and I(t)when there is a constant emf of 110 volts. (OR)6. a) Solve $(D^2 + a^2)y = x\cos ax$ by the method of variation of parameters. [7M] b) Solve $x^2y'' + 5xy' + 4y = x^2 + 16 (ln x)^2$. [7M] UNIT - IV Show that $yz_x + xz_y = x^2 - y^2$ if $e^{-\frac{z}{(x^2 - y^2)}} = (x - y)$. 7. a) [7M] b) If the total surface area of a closed rectangular box is 108 sq. cm, find the [7M] dimensions of the box having maximum volume. 8. a) If $x = e^u \sec v$, $y = e^u \cos v$, find $J = \frac{\partial(x, y)}{\partial(u, v)}$ and $J' = \frac{\partial(u, v)}{\partial(x, v)}$. Also show that JJ' = 1. [7M]

b) Expand *cos x cos y* in powers of *x* and *y* up to third degree terms. [7M]

|""|'|'|"|"||'|||

UNIT - V

9. a) Evaluate $\iint_D xydxdy$ where *D* is the domain bounded by the parabola $x^2 = 4ay$, [7M] the ordinates x=a and *x*-axis.

b) Change the order of integration and thene valuate
$$\int_0^a \int_{\frac{y^2}{a}}^{2a-y} xy \, dx \, dy.$$
 [7M]
(OR)

10 a) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \int_{x}^{\frac{\pi}{2}} \int_{0}^{xy} \cos \frac{z}{x} \, dz \, dy \, dx.$$
 [7M]

b) Evaluate
$$\int_{-a}^{a} \int_{0}^{\sqrt{a^2 - x^2}} xy \, dx dy$$
 by changing into polar coordinates. [7M]

I B. Tech I Semester Regular/Supplementary Examinations, February - 2023 MATHEMATICS-I

MATHEMATICS-I (Common to All Branches)							
Time: 3 hours Max. Marks: 70							
		Answer any FIVE Questions ONE Question from Each Unit All Questions Carry Equal Marks					
1.	a)	Examine the convergence of $(\sqrt{n^2 + 1} - n)x^{2n}$.	[7M]				
	b)	Fine the Maclaurin's series expansion of $f(x) = sinhx$.	[7M]				
		(OR)					
2.	a)	If $0 \le a < b < \frac{\pi}{2}$ then show that $0 < \cos a - \cos b < b - a$.	[7M]				
	b)	Examine the convergence of $\sum_{n=0}^{\infty} \frac{(-1)^n}{1+n^2}$.	[7M]				
		UNIT - II					
3.	a)	Solve $y' - \cot y + x \cot y = 0$.	[7M]				
	b)	A body is heated to 110° C and placed in air at 10° C. After 1 hour its temperature is	[7M]				
		60^{0} C. How much additional time is required for it to cool to 30^{0} C?					
		(OR)					
4.	a)	Show that the family of confocal conics $\frac{x^2}{a} + \frac{y^2}{a-b} = 1$ is "self-orthogonal". Here	[7M]				
		<i>a</i> is an arbitrary constant.					
	b)	Solve $y(xy + 2x^2y^2)dx + x(xy - x^2y^2)dy = 0.$	[7M]				
		UNIT - III					
5.	a)	Solve $(D^4 + 2D^3 - 3D^2)y = x^2 + 3e^{2x} + 4sinx$.	[7M]				
	b)	A circuit consists of an inductance of 0.05 henrys, a resistance of 5 ohms and a	[7M]				
		condenser of capacitance 4×10^{-4} farad. If $Q = I = 0$ when $t = 0$, find $Q(t)$ and $I(t)$					
		when there is an alternating emf 200 cos 100t.					
		(OR)					
6.	a)	Solve $(D^2 + 1)y = \log \cos x$ by the method of variation of parameters.	[7M]				
	b)	Solve $x^3 y^{\prime\prime\prime} - 8x^2 y^{\prime\prime} + 28xy^{\prime} - 40y = -\frac{9}{x}$.	[7M]				
UNIT - IV							
7.	a)	If $u = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$ then show that $(u_x)^2 + (u_y)^2 + (u_z)^2 = u^4$.	[7M]				
	1-)		[7]]				

b) An aquarium with rectangular sides and bottom (and no top) is to hold 32 *liters*. [7M] Findits dimensions so that it will use the least amount of material.

1 of 2

|""|'|"|"||'|||

$$(\mathbf{R20})$$

(**OR**)

8. a) Determine whether the following functions are functionally dependent or not? Find [7M] a functional relation between them in case they are functionally dependent.

$$u = \frac{x}{y}, v = \frac{x+y}{x-y}$$

b) Obtain the expansion of e^{xy} in powers of (x-1) and (y-1). [7M]

UNIT - V

- 9. a) Evaluate $\iint_D x^3 y dx dy$ where *D* is the region enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ [7M] in the first quadrant.
 - b) Change the order of integration and then evaluate $\int_0^1 \int_{y^2}^{y^{1/3}} xy \, dx \, dy$. [7M]

- 10 a) Evaluate $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} \frac{dx \, dy \, dz}{(x+y+z+1)^3}$. [7M]
 - b) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing into polar coordinates. [7M]

2 of 2