I B. Tech I Semester Supplementary Examinations, August/Sep - 2022 MATHEMATICS-II

(Only EEE)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

- 1 a) Find the rank of the matrix by reducing it to normal form $\begin{bmatrix} 1 & 7 & 8 & 1 \\ 1 & 3 & 4 & 2 \\ 3 & 5 & 6 & 10 \\ -1 & 1 & -2 & -2 \end{bmatrix}$. (7M)
 - b) Test for consistency and solve x + 2v + 2w = 1, 2x + y + w = 2, 3x + 2y + 2w = 3, (7M) y + w = 0.

Or

- 2 a) Test for consistency and solve 2x+3y+4z=0, 3x+4y+2z=0, 4x+2y+3z=0. (7M)
 - b) Find the eigen values and the corresponding eigen vectors of $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$. (7M)

UNIT-II

- 3 a) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 4 \\ 2 & 1 & 3 \end{bmatrix}$ and find A^{-1} . (7M)
 - b) Find a singular value decomposition for the matrix $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. (7M)

Or

Reduce the quadratic form $2x^2 + 2y^2 + 2z^2 - 2xy + 2zx - 2yz$ to orthogonal transformation. Also find signature and rank of the quadratic form. (14M)

UNIT-III

- 5 a) Find a real root for $e^x \sin x = 1$, using Regula-falsi method. (7M)
 - b) Solve sinx y + 1.32 = 0 and x cosy 0.85 = 0 starting with $x_0 = 0.6$ and $y_0 = 1.9$ (7M) using Newton Raphson method.

Or

- 6 a) Solve $x^3 = 2x + 5$ for a positive root by iteration method. (7M)
 - b) Solve the system 10x-2y-z-w=3; -2x+10y-z-w=15; -x-y+10z-2w=15; -x-y-2z+10w=-9 using Jacobi method. (7M)

UNIT-IV

- 7 a) Find the parabola passing through points (0, 1), (1, 3), (3, 55). Using Lagrange's (7M) interpolation formula.
 - b) Find f(32), using f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794. (7M)

Or

8 a) Using divided differences find y(x) from the following table: (7M)

X	5	6	9	11
Y	12	13	15	18

b) Prove that i) $\frac{\Delta}{\nabla} - \frac{\nabla}{\Delta} = \Delta + \nabla \text{ ii}) \ \nabla E = E \Delta = \Delta.$ (7M)

UNIT-V

- 9 a) Evaluate $\int_{0}^{1} \sqrt{1+x^4} dx$ using Simpson's 3/8 rule. (7M)
 - b) Given $y' = x + \sin y$, y(0) = 1. Compute y(0.2) given that y' = x + y, y(0) = 1 and y(0.4) with y' = x + y with y' = x + y with y' = x + y and y(0.4) with y' = x + y wit

Or

- Solve $y' = y x^2$, y(0) = 1, by Picard's method up to the fourth approximation. Hence, find the value of y(0.1), y(0.2).
 - b) Obtain the values of y at x = 0.1, 0.2 using Runge-Kutta method of fourthorder. (7M)

2 of 2