Code No: **R201109**

Time: 3 hours

I B. Tech I Semester Supplementary Examinations, July/August-2023 **MATHEMATICS-II**

(Only Electrical and Electronics Engineering)

Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

- x 3y 8z = -10, 3x + y 4z =[7M] 1. a) Test the consistency of the system 0.2x + 5y + 6z = 13 hence solve.
 - b) Solve the system of equations 2x + y + 2z + w = 66x 6y + 6z + 12w = 600[7M] 36.4x + 3y + 3z - 3w = -1.2x + 2y - z + w = 10. by Gauss elimination method.

(OR)

- 2. a) Prove that the product of Eigen values of a matrix is the determinant of the matrix. [7M]
 - b) Solve the system of equations x + y 3z + 2w = 0, 2x y + 2z 3w = 0[7M] 0,3x - 2y + z - 4w = 0, -4x + y - 3z + w = 0.

UNIT-II

Verify Cayley Hamilton theorem for $A = \begin{bmatrix} -2 & 3 & 1 \\ 0 & -1 & 5 \\ -1 & 4 & 0 \end{bmatrix}$, hence compute A^{-1} 3. [7M] a)

b) Find the Nature of the quadratic form $6x^2 + 35y^2 + 11z^2 - 4xz$ [7M]

 (\mathbf{OR})

Reduce the quadratic form $3x^2 + 3y^2 + 3z^2 - 2yz + 2zx + 2xy$ in to 4. [14M] canonical form by orthogonal reduction hence find rank, index and signature.

UNIT-III

- Find the real root of the equation using $-x + log x_{10} + 3 = 0$ Newton Raphson 5. a) [7M] method
 - b) Find the real root of the equation using $x^2 + 4sinx = 0$ using False-position [7M] method

(**OR**)

- a) Find the real root of the equation using $sinx = \frac{x}{2}$ iteration method [7M] 6.
 - b) Find the real root of the equation using 4x = 4sinx + 1 bisection method [7M] **UNIT-IV**
- 7. a) Find $\Delta^2[3^{2x+5}]$ if h =1 [7M]
 - b) Find the Lagrange's polynomial for the following data [7M]

Х	1	2	7	8	
у	1	5	5	4	
(\mathbf{OR})					

		(-)	
Find population	of a town for the	year 1913 and	1965, given that

year	1911	1921	1931	1941	1951	1961
population	10	16	22	28	40	55

1"1'1111"1"1111

8.

[14M]

Code No: **R201109**

UNIT- V

9.	Evaluate $\int_{0}^{8} x secx dx$ using	[14M]
	(i) Trapezoidal	
	(ii) Simpson's 1/3 rd rule	
	(iii) Simpson's 3/8 th rule and compare with exact result.	

(**OR**)

10 a)	By Runge kutta method of fourth order find y (0.1) given that	[7M]
	$\frac{dy}{dx} = 2x + 3e^x, y(0) = 0.$	
b)	D D dy dy dy dy	[7M]

b) By Picard's method find y(0.1) given that $\frac{dy}{dx} = x + y^2$, y(0) = 1 [7M]

2 of 2