Code No: **R201207**

I B. Tech II Semester Supplementary Examinations, Jan/Feb-2024 APPLIED PHYSICS

(Common to EEE, ECE, EIE, ECT, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, AI&DS)

Answer any five Questions one Question from Each Unit

Time: 3 hours

Max. Marks: 70

[4M]

	All Qu	estions (Carry	Equal	Marks		
~~~~~	~~~~~	~~~~~	.~~~	~~~~	~~~~~	~~~~~	~~~~~

#### **UNIT-I**

- 1. a) With the help of neat diagram explain the construction and working of [7M] Nicol's prism.
  - b) Derive the expression for thickness half wave plate. [4M]
  - c) Calculate the thickness of a Mica sheet required for making a quarter-wave [3M] plate for  $\lambda = 5460$  Å The indices of refraction for the ordinary and extraordinary rays in mica are 1.586 and 1.592 respectively.

#### (**OR**)

- 2. a) Explain the Fraunhofer's diffraction due to single slit and derive the [10M] condition for primary maxima, secondary maxima and minima.
  - b) A diffraction grating having 4000 lines per inch is used at normal incidence. [4M] Calculate dispersive power of the grating in second-order spectrum in the 500 nm wavelength region.

#### **UNIT-II**

- 3. a) What are the characteristics of a laser beam? Distinguish between stimulated [8M] and spontaneous emission processes.
  - b) What do you mean by laser pumping? Explain four-level pumping schemes [6M] for laser action.

#### (**OR**)

- 4. a) Explain the principle of optical fiber.
  - b) Explain in detail how optical fibers are classified according to the material, [10M] refractive index and modes of propagation.

#### UNIT-III

- 5. a) State de-Broglie's hypothesis. Derive an expression for de-Broglie [10M] wavelength and using it show that an electron accelerated by a potential difference V volts is  $\lambda = \frac{1.226}{\sqrt{V}}$  Å
  - b) Explain the physical significance of wave function  $(\psi)$ . [4M]

#### (**OR**)

- 6. a) Derive an expression for the current density of a metal by using quantum [8M] free electron theory.
  - b) Write notes on classification of solids basing on band theory. [6M]

|"|"|||"|""|||'|

# ( R20 )



### UNIT-IV

7.	a)	What is ionic polarization? Obtain an expression for ionic polarizability.					
	b)	Derive an expression for local field in a dielectric material.	[7M]				
		( <b>OR</b> )					
8. a)		Write notes on the origin of permanent magnetic materials and derive the expression for orbital magnetic movement of an electron.					
	b)	Explain the hysteresis of ferromagnetic material with the help of the B-H curve.					
		UNIT-V					
9.	a)	Describe Fermi level in intrinsic semiconductor and hence obtain the expression for Fermi energy in terms of the energy gap of intrinsic semiconductor	[7M]				
	b)	b) What is the difference between drift and diffusion currents in a semiconductor? Establish Einstein's equation for mobilities and diffusion coefficients of charge carriers.					
		(OR)					
10.	a)	Discuss Josephson AC and DC effects.	[7M]				
	b)	Write short notes on SQUIDs. Discuss the engineering applications of semi conductors.	[7M]				
		****					

2 of 2