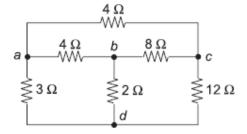


# I B. Tech II Semester Supplementary Examinations, March- 2022 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (ME, AME, Min E, Pet E, Food E, Pharm. E)

Time: 3 hours

2


Max. Marks: 70

### Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

### Unit I

- 1 a) Derive an expression for the equivalent inductance when the inductances are (7M) connected in series.
  - b) A resistance of 10 ohms is connected in series with a combination of two (7M) resistances arranged in parallel each of value 20 ohms. Determine the resistance  $R_3$  which should be shunted across the parallel combination so that current drawn by the circuit is 1.5 A with applied voltage of 20 V.

- (4M)
- b) Obtain the equivalent resistance across 'ad' for the following circuit: (10M)



## Unit II

3 a) Derive the emf equation of a DC machine.

a) State and explain Ohms law.

b) A 6-pole 2 circuit wave connected armature has 250 conductors and runs at 1200 (6M) rpm. The electromotive force generated on open circuit is 600V. Determine the useful flux per pole.

#### Or

- 4 a) Explain how the speed of a DC Shunt motor can be controlled and classify the (7M) methods.
  - b) Swinburne test gave the following results on a de shunt motor: (7M) Supply voltage 500 V, no load current 5 A, Armature resistance 0.5 Ω and Field resistance250 Ω. Determine the efficiency of the machine (i) as a generator delivering 100 A at 500 V (ii) as a motor having a line current of 100 A at 500 V Neglect temperature rise during operation. Assume stray losses at 1 % of output. Unit III
- 5 a) Enumerate the various losses in a Single-phase transformer and how these can be (7M) minimized
  - b) A single-phase transformer has 400 primary and 1000 secondary turns. The net (7M) cross-sectional area of core is 60 cm<sup>2</sup>. If the primary winding be connected to 50 Hz supply at 520 V, calculate (i)the peak value of flux density in the core; (ii) the voltage induced in the secondary winding.



(8M)

Code No: R201211





# Or

| 6       | a) | Explain the difference between salient pole and cylindrical pole type of rotor used in alternators.                                                                                       | (7M) |
|---------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|         | b) | A four-pole, three-phase, 50 Hz induction motor rotates at a speed of 1440 rpm.<br>Calculate its slipin percentage. Also calculate the frequency of the induced EMF in the rotor circuit. | (7M) |
| Unit IV |    |                                                                                                                                                                                           |      |
| 7       | a) | What is a $p - n$ junction and how it is formed and explain the significance of forward biased and reverse biased.                                                                        | (7M) |
|         | b) | Explain the operation of half wave rectifier circuit with corresponding circuit diagram and necessary input and output waveforms.<br>Or                                                   | (7M) |
| 8       | a) | Explain the operation of op – amp as a non - inverting amplifier.                                                                                                                         | (7M) |
|         | b) | Explain how an op – amp can be used as a Differential amplifier (Subtractor).                                                                                                             | (7M) |
| Unit V  |    |                                                                                                                                                                                           |      |
| 9       | a) | Explain the working of a $n - p - n$ transistor with necessary diagrams.                                                                                                                  | (7M) |
|         | b) | Illustrate the input and output characteristics of transistor in CE configuration.                                                                                                        | (7M) |
| Or      |    |                                                                                                                                                                                           |      |
| 10      | a) | Explain how transistor is used as an amplifier with necessary diagram.                                                                                                                    | (7M) |
|         | b) | Distinguish the significance between Active region, cut- off region and saturation                                                                                                        | (7M) |

b) Distinguish the significance between Active region, cut- off region and saturation (7M) region from the output characteristics of any configuration.

2 of 2