

I B. Tech II Semester Regular/Supplementary Examinations, July/August-2023 DATA STRUCTURES

(Common to CSE, IT, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, AI&DS)

Time: 3 hours

Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

- 1 a) What is meant by time complexity? How do we analyze the time complexity of an [7M] algorithm?
 - b) What is sorting? Explain and write an algorithm for bubble sorting and trace the [7M] algorithm with an example: set of elements 12, 34, 89, 15, 47, 76, 29, 53, 02, 91, 66.

(OR)

- 2 a) What is data structure? Explain its role in problem solving? Explain the different [7M] types of data structure with suitable examples.
 - b) What is the role of Pivot element in Quick sort? Explain the different cases of [7M] selection pivot element with analysis of quick sort complexity.

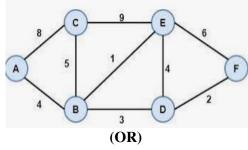
UNIT-II

- 3 a) What is single linked list? Write a pseudo code for traversal operation on the single [7M] linked list, and explain it.
 - b) Explain how two polynomial expressions can be multiplied when polynomial [7M] expressions are represented in single list form.

(**OR**)

4	a)	Explain the representation of linked list in memory.	[7M]
	b)	Explain the insertion and deletion of a random element from the double linked list.	[7M]
		UNIT-III	
5	a)	What is Queue? Write an algorithm for en-queue and de-queue operations and trace with an example.	[7M]
	b)	Explain infix to post fix conversion using stack. Give a suitable example.	[7M]
		(OR)	
6	a)	Explain the implantation stack using array representation and devise the operations.	[7M]
	b)	Explain about circular queues.	[7M]
		UNIT-IV	
7	a)	Construct the binary search tree for the following keys: 55, 42, 89, 34, 67, 78, 40, 22, 12, 56, 88, 65, 26, 98, 102 Perform Infix, prefix and post fix traversal for the resultant binary search tree.	[7M]
	b)	Explain the different types of AVL tree rotations after insertion operation.	[7M]
		(OR)	
8	a)	Explain the insertion and deletion operations on binary search tree.	[7M]
	b)	Define heap? Construct max heap for the following keys: 55, 42, 89, 34, 67, 78, 40, 22, 12, 56, 88, 65, 26, 98.	[7M]
		1 of 2	

(Comm



[7M]

UNIT-V

- 9 a) Define Graph? Explain the two graph representation methods with suitable example. [7M]
 - b) Find the shortest path from A to F using Dijkistra's algorithm.

- 10 a) What is minimum spanning tree? Explain Kruskal's algorithm with example. [7M]
 - b) Write nonrecursive algorithm for DFS and BFS traversal. Trace the algorithm With [7M] an example.

2 of 2

|"|'||||'||

I B. Tech II Semester Regular/Supplementary Examinations, July/August-2023 DATA STRUCTURES

(Common to CSE, IT, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, AI&DS)

Time: 3 hours

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

- 1 a) What is data structure? Explain its role in problem solving? Explain the different [7M] operations on data structure?
 - b) Explain the radix sort algorithm with an example. [7M]

(**OR**)

- 2 a) What is meant by searching in data structures? Explain different searching [7M] techniques with an algorithms and examples.
 - b) Define ADT? Write an ADT algorithm header for text book inventory system. It [7M] includes the following major functions
 - Ordering text books
 - Receiving text books
 - Determining retail price
 - Recording text book sales

UNIT-II

- 3 a) Explain the different cases for deletion operation on the single linked list. [7M]
 - b) Explain how two polynomial expressions can be added when polynomial [7M] expressions are represented in single list form.

(OR)

- 4 a) Explain the advantages and disadvantages of single linked lists and double linked [7M] lists.
 - b) What is sparse matrix? Explain the representation of sparse matrix using linked list [7M] implantation.

UNIT-III

5 a) Explain the implantation Queue using array representation and devise the [7M] operations.
b) Explain factorial calculation using stack. Give the suitable example. [7M]

(**OR**)

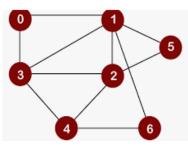
- 6 a) What is Stack? Write an algorithm for push and pop operations and trace with an [7M] example.
 b) Explain about priority queues and its applications. [7M] UNIT-IV
- 7 a) Write an algorithm for Infix, prefix and post fix traversal and trace with an [7M] example.
 - b) Construct the AVL tree for the following keys: [7M] 55, 42, 89, 34, 67, 78, 40, 22, 12, 56, 88, 65, 26, 98, 102,

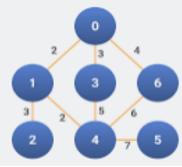
(**OR**)

8	a)	What is Heap? Explain the heap sort technique with a suitable example.	[7M]
	b)	Construct the binary search tree for the following keys: 55, 42, 89, 34, 67, 78, 40, 22, 12, 56, 88, 65, 26, 98, 102	[7M]

From the resultant binary search tree Delete the keys 56, 55, 67, 26

1.1.1111.1...111.1


Max. Marks: 70


UNIT-V

- 9 a) Explain adjacency matrix and adjacency list representation for graphs. [7M]
 - b) Write an algorithm for DFS and BFS. Trace the algorithms for the following graph [7M]

(OR)

10 a) Explain the prim's algorithm for the following graph to find MST. [7M]

b) Explain warshal's algorithm with suitable example.

[7M]

2 of 2

I B. Tech II Semester Regular/Supplementary Examinations, July/August-2023 **DATA STRUCTURES**

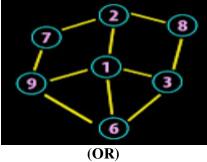
(Common to CSE, IT, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, AI&DS) Max. Marks: 70

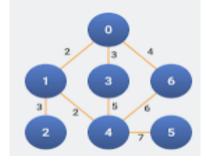
Time: 3 hours

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

TINITT T

		UNIT-I	
1	a)	Explain big-Oh, Theta and Omega notations with suitable examples.	[7M]
	b)	Explain insertion sort algorithm with an example and algorithm.	[7M]
		(OR)	
2	a)	What is meant by sorting? Write a pseudo code for selection sort technique.	[7M]
	b)	 Define ADT? Write an ADT algorithm header for railway reservation system. It includes the following major functions Check the trains between source and destination point Check the availability of tickets iii. Book the ticket iv. Cancel the ticket UNIT-II 	[7M]
3	a)	Explain the different cases for inserting elements in the single linked list.	[7M]
	b)	Explain how polynomial expression can be represented using single lists.	[7M]
		(OR)	
4	a)	What is double linked list? Explain the insertion and deletion operations on it.	[7M]
	b)	Explain how a single linked list can be reversed.	[7M]
		UNIT-III	
5	a)	Explain the implementation Queue using linked list representation and devise the operations.	[7M]
	b)	Explain evaluation of post fix arithmetic expression using stack. Give the suitable example.	[7M]
		(OR)	
6	a)	Explain the implementation Stacks using array representation and devise the operations.	[7M]
	b)	Explain about priority queues and its applications.	[7M]
		UNIT-IV	
7	a)	What are the properties of Binary tree? Explain the representation binary tree using arrays.	[7M]
	b)	Define heap? Construct max heap for the following keys: 55, 42, 89, 34, 67, 78, 40, 22, 12, 56, 88, 65, 26, 98 (OR)	[7M]
8	a)	What is binary search tree? Explain lists properties? Explain the insertion operation and deletion operations on the binary search tree?	[7M]
	b)	Explain two rotation operations on deletion of element from AVL tree.	[7M]


1 of 2


[7M]

UNIT-V

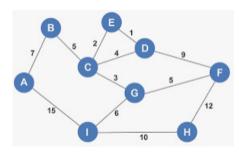
- 9 a) What is graph? Explain different types of graphs with suitable examples. [7M]
 - Directed and undirected
 - Weighted and un weighted
 - b) Write an algorithm for DFS and BFS traversal? Trace the algorithm for the [7M] following graph.

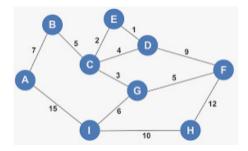
10 a) Explain the Kruskal's algorithm for the following graph to find MST.

b) What is single source shortest path algorithm? Explain with an example. [7M]

2 of 2

	I B. Tech II Semester Regular/Supplementary Examinations, July/August-2023 DATA STRUCTURES				
	Tim	(Common To CSE, IT, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, AI&DS) e: 3 hours Max. Marks:	70		
-		Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks			
1	a)	UNIT-I What is an algorithm? Explain how can the efficiency of an algorithm be analysis?	[7M]		
	b)	Write and explain the algorithm for merge sort. Give an example.	[7M]		
		(OR)			
2	a)	What are the different time complexity notations of the algorithms? Explain them with examples.	[7M]		
	b)	What is meant by sorting? Write a pseudo code for bubble sort technique.	[7M]		
		UNIT-II			
3	a)	What is single linked list? Explain the implementation of single linked list?	[7M]		
	b)	Devise the insertion and deletion operations on circular linked list.	[7M]		
		(OR)			
4	a)	What is sparse matrix? Explain the representation of sparse matrix using linked list implantation.	[7M]		
	b)	Write a pseudo code for printing the elements in reverse order.	[7M]		
		UNIT-III			
5	a)	Explain the implantation Stacks using linked list representation and devise the operations.	[7M]		
	b)	Explain about the circular queues and its applications.	[7M]		
		(OR)			
6	a)	Explain evaluation of post fix arithmetic expression using stack. Give the suitable example.	[7M]		
	b)	What is Queue? Write an algorithm for enqueue and dequeue operations and trace with an example	[7M]		
		UNIT-IV			
7	a)	What is a binary tree? Explain its properties and the linked representation of binary tree with neat sketch.	[7M]		
	b)	Explain the four-rotations on insertion operation in AVL tree	[7M]		
		(OR)			
8	a)	Define heap? Explain its properties. Construct the min heap for the following keys:55, 42, 89, 94, 34, 67, 78, 40, 22, 12, 56, 88, 65, 26	[7M]		
	b)	Explain the different binary tree traversal techniques with suitable examples.	[7M]		


1 of 2


UNIT-V

9 a) What is minimum spanning tree? Explain two algorithms for finding MST for the [14M] given graph.

10 a) Write and explain the single shortest path algorithm. Trace the algorithm for the [7M] following graph. (Path from A to F)

b) Write a short note on representation on graphs using linked list and Transitive [7M] Closure.

2 of 2

|"|'||||'|