Time: 3 hours

each.

1.

[7M]

[7M]

[7M]

Max. Marks: 70

I B. Tech II Semester Supplementary Examinations, Jan/Feb-2024 DATA STRUCTURES THROUGH C

(Electrical and Electronics Engineering)

......

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks a) Define Data Structure. Explain different types of Data Structures. Write a note on Stack data structure. Explain operations of Stack ADT with example b)

(**OR**)

UNIT-I

2. Explain various Asymptotic notations to represent time complexity of an algorithm. [7M] a) b) Describe Queue data structure. Explain Enqueue and Dequeue operations with example [7M] each.

UNIT-II

- What is a Polynomial? Explain various representations of Polynomials in computer 3. a) [7M] memory.
 - b) Explain various operations of Single linked lists.

(**OR**)

4.	a)	Explain advantages and disadvantages of Single linked list over Double linked l	ists. [7M]
----	----	---	------------

Explain with an example to insert a node at beginning and insert a node at end in a [7M] b) Single linked list. Conclude which operation takes less time to complete. Note: Assume any single linked list that contains 3 nodes to perform operations.

UNIT-III

5.	a)	Discuss representation of Binary tree using arrays and linked list.	[7M]
	b)	Construct a Binary search tree with the following elements: 140, 80, 30, 20, 10, 40, 30, 60, 100, 70, 160, 50, 130, 110, 120	[7M]

(**OR**)

6.	a)	Write in-order, pre-order and post-order traversal of a binary tree.	[7M]
	b)	Construct min heap for the following:	[7M]
		140, 80, 30, 20, 10, 40, 30, 60, 100, 70, 160, 50, 130, 110, 120	

UNIT-IV

7.	a)	Write Depth First Traversal algorithm. Explain with an example	[7M]
	b)	Explain Prim's algorithm with an example. Explain its application.	[7M]

1 of 2

1"1"111"1"1111

Code No: **R201208**

SET - 1

(**OR**)

8.	a)	Explain Floyd's algorithm to find transitive closure of a graph with a suitable example.	[7M]
	b)	Define Graph. Explain following	[7M]
		i. Weighted Graph ii. Connected graph iii. Isolated vertex	
		iv. Path v. Degree of the graph	

UNIT-V

9.	a)	Explain the Bubble sort algorithm to sort the following elements: 12, 25, 5, 9, 1, 84, 63, 7, 15, 4, 3.	[7M]
	b)	Write an algorithm to sort elements using Quick sort with suitable example.	[7M]

(**OR**)

- 10. a) Discuss how to sort elements using merge sort with suitable example. [7M]
 - b) Discuss how to search for an element in an array using Linear search with suitable [7M] example.

2 of 2

|"|"|||"|"|||||