

I B. Tech II Semester Regular/Supplementary Examinations, July/August- 2023 DATA STRUCTURES THROUGH C

		(Only for Electrical and Electronics Engineering)		
Time: 3 hoursMax.			Marks: 70	
		Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks		
		UNIT-I		
1.	a)	Define ADT. Explain operations of Array ADT with examples.	[7M]	
	b)	Define Queue ADT. Explain operations of Queues with example each.	[7M]	
		(OR)		
2.	a)	Define Stack. What are the applications of stacks? Convert following expression $X+(Y * Z) - ((N * M + O) / P)$ in to postfix form.	[7M]	
	b)	Define time and space complexity of an algorithm. Explain Big-O notation, Theta notation and Omega notation to represent complexity of an algorithm. UNIT-II	[7M]	
3.	a)	Explain the implementation of stacks using linked lists.	[7M]	
	b)	Explain various operations of Single linked lists.	[7M]	
		(OR)		
4.	a)	Define Sparse Matrix. Explain how to represent a Sparse matrix using linked lists.	[7M]	
	b)	Explain various operations of Double linked lists.	[7M]	
		UNIT-III		
5.	a)	Construct a binary tree given the pre-order and in order traversals as follows: Pre-Order: G B Q A C K F P D E R H In-Order : Q B K C F A G P E D H R	[7M]	
	b)	What is a Binary tree? Discuss representation of a binary tree using arrays and linked list.	[7M]	
		(OR)		
6.	a)	Define Binary Search Tree. Show how to insert and delete an element from BST.	[7M]	
	b)	Construct max heap for the following with program: 140, 80, 30, 20, 10, 40, 30, 60, 100, 70, 160, 50, 130, 110, 120 UNIT-IV	[7M]	
7.	a)	Discuss Kruskal's algorithm to find minimal cost spanning tree with an example.	[7M]	
	b)	Write Breadth first traversal algorithm. Explain with an example.	[7M]	
		(OR)		
8.	a)	Define Graph. Explain how to represent a graph using Arrays and Linked lists.	[7M]	
	b)	Explain Warshall's algorithm to find transitive closure of a graph with a suitable example.	[7M]	
		UNIT-V		
9.	a)	Explain the Merge sort algorithm to sort the following elements: 12, 25, 5,9, 1, 84, 63, 7, 15, 4, 3.	[7M]	
	b)	Compare Linear, Binary and Fibonacci search with respect to their time complexity in best case worst case and average case.	[7M]	
		(OR)		
10	a)	Explain the Quick sort algorithm to sort the following elements: 12, 25, 5,9, 1, 84, 63, 7, 15, 4, 3.	[7M]	
	b)	What is Linear search? Write n algorithm to find the position of the required element in an array of elements.	[7M]	

|"|"|||"|"|||||