	тр	Tash II Somester Supplementary Eveningtians January/February	0022
	I D.	Tech II Semester Supplementary Examinations, January/February - 2 DIGITAL LOGIC DESIGN	2023
	(Com	mon to CSE-CS&T, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, CSE-CS, CSE-IOT&CS BCT, CSE-CS&BS,CSE-IOT, AI&DS, Cyber Security)	INCL
	Time	: 3 hours Max. Marks: 70	
_		Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks	
1	a)	Perform the following using BCD arithmetic. i) $(79)_{10} + (177)_{10}$ ii) $(481)_{10} + (178)_{10}$	[7M]
	b)	Perform the subtraction operation by using 2's complements i) 11100101-101011 ii) (12378) ₁₀ .(10230) ₁₀	[7M]
		(OR)	
2	a)	Encode the decimal number 493 in (i) Binary (ii) BCD (iii) ASCII (iv) Excess – 3.	[7M]
	b)	Explain about the Binary Codes, BCD and 2421codes.	[7M]
3	a)	UNIT - II Simplify the Boolean expressions to minimum number of literals i) $X' + XY + XZ' + XYZ'$ ii) $(X+Y) (X+Y')$.	[7M]
	b)	Implement the Boolean function F (A, B, C, D) = $A'B'+C'D'+B'C'$ using the following two level gates i) NAND-AND ii) NOR-OR.	[7M]
		(OR)	
4	a)	Simplify the Boolean expression using K-MAP $F(A,B,C,D) = \pi M (3,5,6,7,11,13,14,15) + d(9,10,12)$	[7M]
	b)	Find the complement of the function and represent in sum of minterms and product of maxterms $F(x,y,z) = xy + z'$.	[7M]
5	a)	UNIT - III Implement the function $\mathbf{E} = \sum m (0, 1, 2, 4, 5, 8, 11, 12, 15)$ using 8:1 multipleyer	[7M]
5	a) b)	Implement the function $F = \sum m (0, 1, 2, 4, 5, 8, 11, 12, 15)$ using 8:1 multiplexer. Implement the following Boolean functions using PAL.	[7M]
	0)	(i) $A=XY+XZ'$, $B=XY'+YZ'$ ii) $A=XY+XZ$, $B=XY'+YZ+XZ$.	[/1 v1]
		(OR)	
6	a)	Construct 4*16 Decoder with help of 2*4 Decoder.	[7M]
	b)	Implement the following functions using PLA with three inputs, four product terms and two outputs.	[7M]
		F1 (A, B, C) = $\sum m$ (3, 5, 6, 7) F2 (A, B, C) = $\sum m$ (0, 2, 4, 7). UNIT - IV	
7	a)	Draw the circuit diagram of positive edge triggered JK flip-flop with NAND gates and explain its operation using truth-table.	[7M]
	b)	Convert RS flip flop to a i) D-latch ii) T-latch.	[7M]
		(OR)	
8	a)	Construct the D flipflop with the help of truth table and excitation table.	[7M]
	b)	What is race-around condition? How does it set eliminate using a Master –slave J-K flip-flop?	[7M]
		1 of 2	

Code No: **R201221 R20 SET - 1**

UNIT - V

9	a)	Develop the design steps of synchronous counters with suitable examples.	[7M]		
	b)	Using D-Flip flops and wave forms, explain the working of a 4-bit SISO shift register.	[7M]		
(OR)					
10	a)	Design 5stage twisted ring counter with circuit diagram, state transition diagram and state table.	[7M]		
	b)	Design MOD -6 Ripple Down counters.	[7M]		

2 of 2