

I B. Tech II Semester Regular/Supplementary Examinations, July/August - 2023 DIGITAL LOGIC DESIGN

(Common to CSE-CS&T, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, CSE-CS, CSE-IOT&CS INCL BCT, CSE-CS&BS, CSE-IOT, AI&DS, Cyber Security)

Time: 3 hours

Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

- 1 a) Convert the following to Decimal and then to octal i) $(125F)_{16}$ ii) $(10111111)_2$ iii) $(392)_{10}$ [7M]
 - b) How do you convert a gray number to binary? Generate a 4-bit gray code directly [7M] using the mirror image property?

(OR)

- 2 a) With suitable examples discuss the subtraction of two numbers using radix [7M] complement and diminished radix complement forms.
 - b) What is 2421 code? Write the code words for 0-9 using 2421 code? Differentiate [7M] between BCD code and 2421 code?

UNIT-II

- 3 a) Without reducing, implement the following expressions in AOI logic and then [7M] convert them into NAND logic and NOR logic A + BC + (A + B'C) + D ii) A + B'C + (B + C)' + B'C'.
 - b) Reduce using mapping the following expression and implement the real minimal [7M] expression in Universal logic. $F = \sum m (0, 2, 4, 6, 7, 8, 10, 12, 13, 15)$.

(OR)

- 4 a) State and prove consensus theorem? Solve the given expression using consensus [7M] theorem.
 - (i) $\overline{AB} + AC + \overline{BC} + \overline{BC} + AB$
 - (ii) $(A+B)(\overline{A}+C)(B+C)(\overline{A}+D)(B+D)$
 - b) Reduce the following expression to the simplest possible POS and SOP forms. [7M] $F = \sum m (6,8,13,18,19,25,27,29,31) + d (2,3,11,15,17,24,28)$

UNIT-III

- 5 a) What is a decoder? Draw the logic diagram of a 2 to 4 line decoder using NAND [7M] gates including an enable input.
 - b) Give circuit implementation of 4 Bit Ripple adder and Ripple Adder/Subtractor [7M] using ones and twos complement method.

(OR)

- 6 a) Design a combinational circuit using ROM. The circuit accepts a 3 bit number and [7M] generates an output binary number equal to square of input number.
 - b) Design and draw the logic circuit diagram for full adder/subtractor. Let us consider [7M] a control variable w and the designed circuit that functions as a full adder when w=0, as a full subtractor when w= 1.

UNIT-IV

7	a)	Draw the schematic circuit of an edge-triggered JK flip flop with active low preset and active low clear using NAND gates and explain its operation?	[7M]		
	b)	Analyze latch with NOR gates. Derive transition and state tables.	[7M]		
(OR)					
8	a)	Convert a JK flip flop into: i) SR flip flop ii) T flip flop iii) D flip flop	[7M]		
	b)	What is the drawback of JK flip flop? Design a flip flop which overcomes this drawback and explain with neat diagram.	[7M]		
0	`				
9	a)	3, 1using T-flip flop.	[/] NI]		
	b)	Draw and explain the operation of parallel-in parallel-out shift register.	[7M]		
		(OR)			
10	a)	Explain the operation of 4-bit Johnson counter with circuit diagram, state transition diagram and state table. Draw the corresponding timing diagrams?	[7M]		
	b)	Design a 4-bit universal shift register using D flip flops and multiplexers?	[7M]		

2 of 2

I B. Tech II Semester Regular/Supplementary Examinations, July/August- 2023 DIGITAL LOGIC DESIGN

(Common to CSE-CS&T, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, CSE-CS, CSE-IOT&CS INCL BCT, CSE-CS&BS, CSE-IOT, AI&DS, Cyber Security)

Time: 3 hours

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

- 1 a) What is the use of complements? Perform subtraction using 7's complement for the [7M] given Base-7 numbers (565)-(666).
 - b) Explain various number systems and codes and their conversion with examples for [7M] each.

(**OR**)

- 2 a) Convert the following i) $(53.625)_{10}$ to $(?)_2$ ii) $(3FD)_{16}$ to $(?)_2$ iii) $(A69.8)_{16}$ to $(?)_{10}$ [7M]
 - b) Perform the subtraction in binary using 1's and 2's complement methods. (i) $(97)_{10} - (255)_{10}$ ii) $(1111101)_2 - (100111110)_2$ iii) $(255)_{10} - (408)_{10}$

UNIT-II

- 3 a) State and prove the following laws of Boolean algebra. [7M]
 i) Commutative ii) associative iii) distributive iv) idempotence v) absorption
 b) Represent and draw the following Boolean function using minimum number of basic [7M]
 - gates. i) (AB + AB') (AB)'

ii) [(ABD(C + D + E)) + (A + DBC)'] (ABC + (CAD)')

(**OR**)

4 a) Simplify the following Boolean expression. [7M] $T(x, y, z) = (x + y) \{ [x' (y' + z')]' \} + x' y' + x' z'$ $X(A, B, C, D) = A^{1}B^{1}C^{1} + (A+B+C^{1})^{1} + A^{1}B^{1}C^{1}D$

b) Reduce the following expression using k-map
$$f=\prod M(1, 4, 5, 11, 12, 14) d(6, 7, 15)$$
. [7M]

UNIT-III

- 5 a) What is a multiplexer? Design a 4*1 multiplexer. Write the truth table and draw the [7M] logic diagram.
 - b) Design a PAL for the following logical functions. [7M] $Y_1=AB+A'CB', Y_2=AB'C+AB+AC', Y_3=AB+BC+CA$

(**OR**)

- 6 a) Design a function F = ABC + (A+B+C)' by using 3 to 8 decoder. [7M]
 - b) What is a PLD? Tabulate the comparisons between PLA, PAL and PROM. [7M]

UNIT-IV

- 7 a) Draw the schematic circuit of a D flip flop with negative edge triggering using [7M] NAND gates. Give its truth table and explain its operation.
 - b) Distinguish between combinational and sequential circuits. List some applications of [7M] sequential circuits.

Max. Marks: 70

[7M]

(OR)

8	a)	Draw the circuit diagram of a positive edge triggered JK flip flop and explain its operation with the help of a truth table.	[7M]		
	b)	Convert a D flip flop into SR flip flop and JK flip flop.	[7M]		
UNIT-V					
9	a)	Design a modulus 6 synchronous counter using JK flip-flop and also draw the timing diagrams.	[7M]		
	b)	List the basic types of shift registers in terms of data movement with diagrams.	[7M]		
		(OR)			
10	a)	Draw the state diagram of modulo-4 up/down counter. Explain its operation with the help of timing diagrams.	[7M]		

b) Explain the design of ring counter using shift registers. [7M]

2 of 2

|"|"|||"|"|||||

I B. Tech II Semester Regular/Supplementary Examinations, July/August- 2023 DIGITAL LOGIC DESIGN

(Common to CSE-CS&T, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, CSE-CS, CSE-IOT&CS INCL BCT, CSE-CS&BS,CSE-IOT, AI&DS, Cyber Security)

Time: 3 hours

Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

		UNIT-I	
1	a)	How are negative numbers represented? Represent signed numbers from +7 to -8 using different ways of representation	[7M]
	b)	Convert the following numbers into Gray code numbers	[7]1]
	0)	i) 06 iii) 45 iiii) 225 iv) 85	[/101]
		$1) 90_{10} 11) 43_{16} 111) 233_8 11) 83_{12} (OP)$	
		(OR)	
2	a)	Subtract the following decimal numbers by the 9's and 10's complement methods.	[7M]
		274 - 86 ii) 93 - 615 iii) 574.6 - 297.7 iv) 376.3 - 765.6	
	b)	Express the Decimal Digits 0 - 9 in BCD, 84-2-1 and Excess-3.	[7M]
		UNIT-II	
3	a)	Simplify the following using K- map and implement the same using NAND gates.	[7M]
		Y (A, B, C) = $\sum (0, 2, 4, 5, 6, 7)$	
	b)	Derive and Implement Exclusive OR function involving three variables using only	[7M]
		NAND function.	
		(OR)	
4	a)	Simplify the following using K- map and implement the same using NOR gate.	[7M]
		$Y(A,B,C,D) = \sum (0.2,5,7,8,10,13,15)$	r. 1
	b)	Obtain the simplified expression in product of sums.	[7M]
	- /	i) $F(A,B,C,D) = \pi(0,1,2,3,4,10,11)$ ii) $F(A,B,C,D) = \pi(1,3,5,7,13,15)$	r. 1
5	a)	Explain the design procedure for multiplexers and draw the logic diagram of a 4-	[7M]
5	<i>a)</i>	to 1 line multiplever with logic gates	[/14]
	b)	Design an 8:3 encoder circuit? Write a HDL code for an 8:3 encoder and explain	[7]1]
	0)	the same briefly	[/101]
		(OP)	
		(OR)	
6	a)	What is a comparator? Explain the operation of a 2-bit comparator with a relevant	[7M]
		diagram. Draw its logic symbol and write a HDL code.	
	b)	Explain the working of n-bit subtractor with the help of neat block diagram?	[7M]
		UNIT-IV	
7	a)	Design a JK flip flop using AND gates and NOR gates. Explain the operation of	[7M]
		the JK flip flop with the help of characteristic table and characteristic equation.	

- Explain the Race around condition and also explain how to eliminate it.
- b) Draw the circuit diagram of clocked D-flip-flop with NAND gates and explain its [7M] operation using truth table. Give its timing diagram.

(**OR**)

- 8 a) Draw the schematic circuit of a T flip flop with negative edge triggering using [7M] NAND gates. Give its truth table and explain its operation?
 - b) Implement RS-latch using NAND and NOR gates? Explain its operation. [7M]

UNIT-V

- 9 a) What is the primary disadvantage of an asynchronous counter? Explain the [7M] working of 4-bit asynchronous counter?
 - b) Explain the operation of 4-bit serial in parallel out shift register with the help of [7M] neat diagrams.

(OR)

- 10 a) Design a 4-bit ring counter using D flip-flop. Draw and explain the circuit diagram [7M] and timing diagrams.
 - b) List the basic types of shift registers and state various applications of shift register. [7M]

2 of 2

I B. Tech II Semester Regular/Supplementary Examinations, July/August-2023 DIGITAL LOGIC DESIGN

(Common to CSE-CS&T, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, CSE-CS, CSE-IOT&CS INCL BCT, CSE-CS&BS, CSE-IOT, AI&DS, Cyber Security)

Time: 3 hours Max. Marks: 70 Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks UNIT-I 1 a) Perform the subtraction using 1's complement and 2's complement methods. [7M] i) 11010 - 10000 ii) 11010 – 1101 iii) 100 - 110000 b) Find the 12-bit 1's complement form of the following decimal numbers. [7M] i) -97 ii) -224 iii) -205.75 iv) -29.375 (**OR**) a) Convert the following octal numbers to hexadecimal 2 [7M] i) 256 iii) 1762.46 ii) 2035 iv) 6054.263 b) What is a Gray code? Obtain a 3-bit and 4-bit gray code from a 2-bit gray code by [7M] reflection. **UNIT-II** 3 a) Draw the logic symbol and construct the truth table for each of the following gates. [7M] i) Two input NAND gate ii) Three input NOR gate iii) Two input Ex-OR gate iv) Three input Ex-NOR gate b) Convert the given expressions in standard SOP form [7M] i) f(A,B,C)=A + AB + CBii) f(P,Q,R)=PQ + R + PR(**OR**) a) Using K-map method, simplify the POS expression for the Boolean function, 4 [7M] $Y(A,B,C,D) = \pi M(0,1,2,3,4,6,10,11)$ Implement the same using universal gates. b) Convert the given expressions in standard POS form [7M] i) f(A, B, C) = (A + B)(B + C)ii) f (P, Q, R)= (P + Q')(P + R)**UNIT-III** 5 a) Implement the following multiple output functions using PROM [7M] $F1 = \sum m (0, 1, 4, 7, 12, 14, 15)$ $F3 = \sum m (2, 3, 7, 8, 10)$ $F2 = \sum m(1, 3, 6, 9, 12)$ $F4 = \sum m(1, 3, 5)$ b) Design a 32:1 multiplexer using two 16:1 and 2:1 multiplexers. [7M] (**OR**) 6 a) What is programmable logic array? Draw and explain the block diagram of PLA? [7M] b) Explain the design procedure for multiplexers and de-multiplexers and draw the logic [7M] diagram of a 4-to-1 line multiplexer with logic gates. **UNIT-IV** a) Distinguish between latch and flip-flop. Show the logic diagram for both. Explain the 7 [7M] operation with the help of function table.

b) Give the transition table for SR, JK, D and T flip flops. Convert an SR flip flop into [7M] D flip flop.

|"|"|||"|"||||

(**OR**)

- 8 a) What do you mean by sequential circuit? Explain with the help of block diagram? [7M] Give the comparisons between combinational and sequential circuits.
 - b) Draw the schematic circuit of a D flip flop with negative edge triggering using [7M] NAND gates. Give its truth table and explain its operation?

UNIT-V

- 9 a) With the help of neat diagram explain the operation of 4-bit serial-in serial-out shift [7M] register?
 - b) Draw the logic diagram of a 4-bit binary ripple counter using flip flops that trigger on [7M] negative edge transition? Explain the operation.

(OR)

- 10 a) How synchronous counters differ from asynchronous counter. Draw the complete [7M] timing diagram for the five-stage synchronous binary counter.
 - b) What is shift register? Explain the different modes of operation of shift register? [7M]

2 of 2