Code No: R201221

I B. Tech II Semester Supplementary Examinations, March- 2022 DIGITAL LOGIC DESIGN

(CSE-CS&T, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, CSE-CS, CSE-IOT&CS INCL BCT,

Time: 3 hours

CSE-CS&BS,CSE-IOT, AI&DS, Cyber Security)

Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

		UNIT-I			
1	a)	Express the following numbers in decimal: (i) (26.24)	(7M)		
		(i) $(26.24)_8$ (ii) $(DADA.A)_{16}$			
	b)	Represent the decimal number 1,999 in: (i) BCD, (ii) 84-2-1 code, (iii) 2421 code.	(7M)		
		Or			
2	a)	Express the following numbers in binary:	(7M)		
		(i) $(27.315)_{10}$			
	1 \	(ii) $(16.5)_{16}$			
	b)	Perform the subtraction on the given unsigned binary numbers using the 1's and 2's complement methods: 100010-100110.	(7M)		
	UNIT-II				
3	a)	Draw the logic diagram corresponding to the following Boolean expressions	(7M)		
5	<i>a)</i>	without simplifying them: (i) BC'+AB+ACD	(71 v1)		
		(ii) $(AB+A'B')(CD'+C'D)$			
	b)	Simplify the Boolean function using K-map in sum of products form: $F(w,x,y,z)=\prod(0,1,2,3,4,10,11).$ Or	(7M)		
4	a)	Simplify the following expression and implement with two-level NOR gate circuits:	(7M)		
		AB'C+B'C'D'+BCD+ACD'+A'B'C+A'BC'D			
	b)	Simplify the Boolean function using K-map in sum of products form and draw the logic diagram after simplification:	(7M)		
		$F(A,B,C,D)=\Sigma(0,2,4,5,6,7,8,10,13,15).$			
UNIT-III					
5	a)	Design a 2-bit comparator with basic gates.	(7M)		
	b)	Write and verify a gate-level hierarchical HDL model of the 4-to-16-line decoder	(7M)		

Or

- 6 a) Design a 3-to-8 decoder with only 2-input NAND gates. (7M)
 - b) A combinational circuit is defined by the functions: (7M) $F_1(A,B,C)=\Sigma(3,5,6,7); F_2(A,B,C)=\Sigma(0,2,4,7).$ Implement the circuit with PLA.

circuit.

R20

SET - 1

UNIT-IV

7	a)	Explain the principle of T Flip-flop with the help of logic diagram and excitation table.	(7M)		
	b)	Convert the JK Flip-flop into D Flip-flop.	(7M)		
	Or				
8	a)	Explain the principle of JK Flip-flop with the help of logic diagram and truth table.	(7M)		
	b)	Convert the T Flip-flop into D Flip-flop.	(7M)		
	UNIT-V				
9	a)	Design a mod-12 counter using T flip-flops.	(7M)		
	b)	Explain the operation of 4-bit left shift register with JK flip-flops.	(7M)		
Or					
10	a)	Explain the operation of a 4-bit shift register with parallel load using D flip-flops.	(7M)		
	b)	Design a counter with the following repeated binary sequence: 0, 1, 2, 4, 6. Use D flip-flops. Treat the un-used states as don't-care conditions.	(7M)		

2 of 2