

I B. Tech II Semester Supplementary Examinations, Jan/Feb-2024 ELECTRICAL CIRCUIT ANALYSIS –I

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

- a) Explain the following with respect to necessary examples: [7M]
 i) Independent Voltage Source ii) Dependent Voltage source
 iii) Linear and Non Linear Elements
 - b) Find the power delivered by the voltage and current sources in the following [7M] circuit:

- 2. a) Explain the steps involved in delta to star transformation as a network reduction [7M] technique.
 - b) For the following circuit, find the voltages and currents. [7M]

UNIT-II

- 3. a) Explain the concept of Mutual inductance and give the significance of Dot [7M] convention in magnetic circuits.
 - b) For the circuit shown below, if $L_1 = 2H$, $L_2 = 4H$, M = 1.2H. Find the expression [7M] for the energy stored 't' seconds after the switch is closed.

(OR)

- 4. a) Prove that when two coils of self-inductances L_1 and L_2 are connected in parallel [7M] opposing connection with a mutual inductance M then the total inductance is equal
 - to $L_{eqv} = \frac{L_1 L_2 M^2}{L_1 + L_2 + 2M}$

1 of 3

1''1''111''1'''111'1

Code No: **R201209**

UNIT-III

R20

- 5. a) Explain the following terms relating to Alternating quantity: [7M] i) Amplitude ii) Instantaneous value iii) Time period iv) Frequency v)Phase angle vi) phase difference vii) Root mean square value
 - b) A circuit containing a (i) resistance of 20 Ω alone (ii) inductance of 10 mH alone [7M] and (c) capacitance of 300 μ F alone is connected across an alternating voltage source; write the expressions for the current when v = 100 sin 100 π t.

(**OR**)

- 6. a) Prove that in a purely inductive circuit the active power over a complete cycle is [7M] Zero.
 - A voltage of 400 V is applied to a series circuit containing a resistor, an inductor [7M] and a capacitor. The respective voltages across the components are 250 V, 200 V and 180 V and the current is 5 A. Determine the phase angle of the current.

UNIT-IV

- 7. a) List and explain the properties of Series Resonant circuits [7M]
 - b) A series RLC circuit has $R = 10 \Omega L = 0.1 H$ and $C = 8 \mu F$. Determine (i) The [7M] resonant frequency (ii) Q factor of the circuit at resonance (iii) Half power frequencies.

(OR)

- 8. a) Explain the effect of variation of current and voltage across Inductor and [7M] capacitor with respect to frequency in a parallel resonance circuit.
 - b) Draw and explain the locus diagram for a series R L circuit when R is variable [7M] and fixed inductive reactance.

UNIT-V

- 9. a) State and explain Norton's theorem.
 - b) Check whether the reciprocity theorem is valid for the following circuit or not. [7M] Comment up on the result.

|"|"|||"|"||||

[7M]

[7M]

SET - 1

Code No: **R201209**

(**OR**)

10. a) State and explain Millman's theorem.

[4M]

b) i)Find the value of R in the circuit shown below, if i_x is to be zero and ii) If i_x was [10M] seen to be 0.01mA, find the value of R by using compensation theorem.

3 of 3