

b) A closed magnetic circuit of cast steel contains a 6 cm long path of cross-sectional [7M] area 1 cm² and a 2 cm path of cross-sectional area 0.5 cm². A coil of 200 turns is wound around the 6 cm length of the circuit and a current of 0.4A flows. Determine the flux density in the 2 cm path if the relative permeability of the cast steel is 750.

(**OR**)

- 4. a) Explain the analogy between electric and magnetic circuits? [7M]
 - b) A magnetic circuit of cross-sectional area 0.4 cm² consists of one part 3 cm long, of [7M] material having relative permeability 1200, and a second part 2 cm long of material having relative permeability750. With a 100-turn coil carrying 2A, find the value of flux existing in the circuit.

Code No: **R201209**

UNIT-III

5. Calculate the average power absorbed by each passive element in the circuit shown, a) [7M] and verify that it equals the average power supplied by the source?

b) A coil of inductance 159.2mH and resistance 20 Ω is connected in series with a [7M] 60resistor to a 240V, 50 Hz supply. Determine (i) the impedance of the circuit, (ii) the current in the circuit, (iii) the circuit phase angle, (iv) the p.d. across the 60 Ω resistor and (v) the p.d. across the coil. (vi) Draw the circuit phasor diagram showing all voltages.

(OR)

- a) The voltage of a circuit is $v = 200 \sin(\omega t + 30^{\circ})$ and the current is $i = 50 \sin(\omega t + 30^{\circ})$ 6. [7M] 60°). Calculate i. The average power, reactive volt-amperes, and apparent power ii. Find the circuit elements if $\omega = 100\pi$ rad /sec.
 - Determine the RMS value of the current waveform shown below? If this current b) [7M] waveform is passed through 2 Ω resistorfind the average power absorbed by the resistor?

UNIT-IV

- 7. a) A coil of resistance 25Ω and inductance 100mH is connected in series with a [7M] capacitance of 0.12 μ F across a 200V, variable frequency supply. Calculate (i) the resonant frequency, (ii) the current at resonance and(iii) the factor by which the voltage across the reactance is greater than the supply voltage.
 - b) A series RLC Circuit has a quality factor of 5 at 50 rad/s. The current flowing [7M] through the circuit at resonance is 10 A and the supply voltage is 100 V. Find the Circuit constants?

(OR)

- 8. A coil of 10 Ω resistance and 0.2 H inductance is connected in parallel with a [7M] a) variable capacitance across a 220 V, 50 Hz supply. Calculate (i) the capacitance of the capacitor for resonance (ii) the dynamic impedance of the circuit and the supply current.
 - b) With a neat sketch explain series Locus diagram [7M]

1"1'1111"1"111'1

Code No: R201209

UNIT-V

- 9. a) State and explain Milliman's theorem with an example? [7M]
 - b) Apply the superposition principle to find i and power delivered to the 3 Ω resistor [7M] in the circuit shown below?

- 10. a) State and explain maximum power transfer theorem with an example for DC [7M] excitation?
 - b) Obtain the Norton equivalent of the circuit in Fig. shown to the left of terminals a- [7M] b. Use the result to find current i.

3 of 3