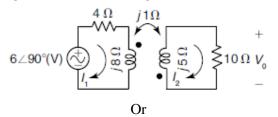
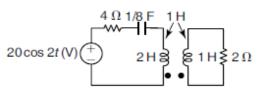


I B. Tech II Semester Supplementary Examinations, March- 2022 ELECTRICAL CIRCUIT ANALYSIS –I (Only for EEE)

Time: 3 hours			Max. Marks: 70	
Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks Unit I				
1.	a)	Explain the following w.r.t necessary examples: i)Independent Current Source ii) Dependent Current source iii)Lumped and Distributed Elements	(7M)	
	b)	Find the power absorbed and power delivered by the following circuit:	(7M)	


2. Find the node voltages and the current through all the elements for the following (14M) circuit using Nodal analysis.

Or



Unit II

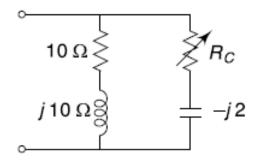
- 3. a) Prove that the coefficient of mutual inductance M between two coils of selfinductances L₁ and L₂ is given by $\frac{M}{\sqrt{L_1L_2}}$ (7M)
 - b) Determine the voltage V_0 for the following circuit. (7M)

- 4. a) Prove that when two coils of self-inductances L_1 and L_2 are connected in series (7M) opposing connection with a mutual inductance M then the total inductance is equal to $L_{eqv} = (L_1 + L_2 2M)$.
 - b) Determine the coupling coefficient and the energy stored in the following (7M) coupled circuit at t = 2 seconds

1...1.1.1.1.111

Code No: R201209

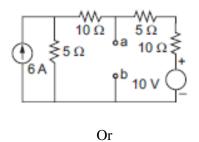
Unit III

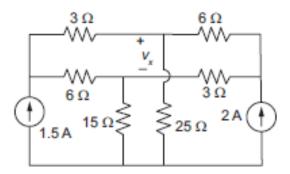

- 5. a) What is a Power triangle and explain the significance of it. (7M)
 - b) When a resistor and coil in series are connected to a 240 V supply, a current of 5 (7M) Ais flowing lagging 60° behind the supply voltage, and the voltage across the coil is 220 V.Find the resistance of the resistor and the resistance and reactance of coil.

Or

- 6. a) Explain the following terms relating to Alternating quantity: (7M) i)Average value ii) Peak factor iii) Form factor
 - b) If the form factor of a current wave form is 2 and the amplitude factor is 2.5, (7M) find the average value of the current if the maximum value of the current is 500A.

Unit IV


- 7. a) Explain the effect of variation of current and voltage across Inductor and (7M) capacitor w.r.t frequency in a series resonance circuit
 - b) An inductive coil is connected in series with a 8 μF capacitor. With a constant (7M) supply voltage of 400 V the circuit takes minimum current of 80 A when the supplyfrequency is 50 Hz. Calculate the (i) resistance and inductance of the coil and (ii) voltageacross the capacitor.
 - Or
- 8. a) Draw and explain the locus diagram for a series R C circuit when R is fixed (7M) and variable capacitive reactance.
 - b) Calculate the value of R_C in the circuit shown below which yields resonance. (7M)



- 9. a) State and explain Substitution theorem.
 - b) Find the Thevenin's equivalent and Norton's equivalent for the following circuit (7M) w.r.t terminals a and b.

(7M)

10. Find V_x in the circuit shown below using super position theorem (14M)

3of 3