

I B. Tech II Semester Supplementary Examinations, Jan/Feb-2024
MATHEMATICS-II

		(Common to All Branches)	
	Time	: 3 hours Max. Marks	: 70
		Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks	
		UNIT - I	[7]] (7]
•	a)	$\begin{vmatrix} 1 & 1 & -1 & 2 \end{vmatrix}$	[7M]
		Find the Rank of the matrix $\begin{bmatrix} 1 & 1 & -1 & 2 \\ 2 & 4 & 6 & 4 \\ 1 & 2 & 3 & 2 \end{bmatrix}$ by reducing it into normal form.	
	b)	Apply Gauss Elimination method to Solve the system of equations	[7M]
		2x + y + 2z + w = 6, $6x - 6y + 6z + 12w = 36$,	
		$4x + 3y + 3z - 3w = -1, \qquad 2x + 2y - z + w = 10$	
		(OR)	
	a)	Test for consistency and solve the system of equations	[7M]
		5x + 3y + 7z = 4, $3x + 26y + 2z = 9$, $7x + 2y + 10z = 5$.	
	b)	[3 1 4]	[7M]
	0)	Write Eigen values and Eigenvectors of the matrix $\begin{bmatrix} 0 & 2 & 6 \end{bmatrix}$. Hence find Eigen	[, 1, 1
		Write Eigen values and Eigenvectors of the matrix $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$. Hence find Eigen	
		values of A^2 and A^{-1} .	
		UNIT - II	
•	a)	Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2xy - 2yz + 2zx$ to canonical form	[7M
		by orthogonal transformation and hence find rank, index, signature and nature of the	
		quadratic form	
	b)	Verify Cayley-Hamilton theorem for the matrix A and hence find A^{-1} if	[7M
		$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ 2 & 4 & 4 \end{bmatrix}.$	
		$\begin{bmatrix} -2 & -4 & -4 \end{bmatrix}$	
		(OR)	
	a)		[7M]
		Find A^{-1} and A^{4} using Cayley-Hamilton theorem where $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 2 \\ 2 & -2 & 1 \end{bmatrix}$.	
	b)	Determine orthogonal matrix that will diagonalize the real symmetric matrix	[7M
		0 3 1 Also find the resulting diagonal matrix.	
		UNIT - III	
			[7]]
•	a)	Find a real root of the equation $x \log_{10} x = 1.2$. Which lies between 2 and 3 by bisection method?	[7M
	b)	Solve the system of equations by using Gauss-Jacobi method $2x + y + z = 10$,	[7M
		3x + 2y + 3z = 18, $x + 4y + 9z = 16$ correct to two decimal places	
		(OR)	

1 of 2

	Cod	e No: R201201 (R20) (SET - 1	1)
6.	a)	Find real root of $e^x sinx = 1$ using Regula Falsi method.	[7M]
	b)	Solve the system of equations by using Gauss-Seidel method 10x - 2y - z - w = 3, $-2x + 10y - z - w = 15$, $-x - y + 10z - 2w = 27$, -x - y - 2z + 10w = -9	[7M]
		UNIT – IV	
7.	a)	Find missing term in the table	[7M]

b) Find the polynomial f(x) by using Lagrange's interpolation formula and hence find f(3)[7M] for

4

49.2 54.1

5 6

67.4

x	0	1	2	5
f(x)	2	3	12	147
J(n)	_	-		

(**OR**)

8. For the following data estimate f(1.720) using Forward difference formula a)

2

v

45

3

x	1.6	1.8	2	2.2	2.4	2.6	2.8	3.0
f(x)	0.0495	0.0605	0.039	0.0903	0.1102	0.1346	0.1664	0.2009

b) Find cubic polynomial which takes the following values and hence evaluate f (4). [7M]

x	0	1	2	3
f(x)	1	2	1	10

UNIT - V

- Use the Trapezoidal rule to estimate the integral $\int_0^2 e^{-x^2} dx$ taking h = 0.259. a) [7M]
 - Use Taylor's series method, find approximate value of y at x = 0.2 for the differential b) [7M] equation $y' - 2y = 3e^x$, y(0) = 0. Compare the numerical solution obtained with exact solution

(**OR**)

- Evaluate correct to 4 decimal places by Simpson's $3/8^{\text{th}}$ rule $\int_0^{\frac{\pi}{2}} e^{\sin x} dx$ Use Runge-Kutta method of 4^{th} order to find y at x = 0.1 given that $\frac{dy}{dx} = 3e^x + 2y$, 10 a) [7M]
 - [7M] b) y(0) = 0 taking h = 0.1

2 of 2

[7M]