



## I B. Tech II Semester Regular/Supplementary Examinations, July/August-2023 MATHEMATICS-II

|     |       | (Common to All Branches)                                                                                                                                                                                                         |         |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Tin | ne: 3 | hours Max. Mar                                                                                                                                                                                                                   | ·ks: 70 |
|     |       | Answer any FIVE Questions One Question from Each Unit<br>All Questions Carry Equal Marks                                                                                                                                         |         |
|     |       | UNIT -I                                                                                                                                                                                                                          |         |
| 1.  | a)    | Find the rank of the matrix by reducing into echelon form $\begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & -3 & 2 & 2 \\ -3 & -4 & 5 & 8 \\ 1 & 3 & 10 & 14 \end{bmatrix}$                                                                 | [7M]    |
|     | b)    | Solve the following equations by Gauss Elimination method<br>2x + 4y + 2z = 15; $2x + y + 2z = -5$ ; $4x + y - 2z = 0$ .                                                                                                         | [7M]    |
|     |       | (OR)                                                                                                                                                                                                                             |         |
| 2.  | a)    | Discuss for what values of $\lambda$ , $\mu$ the simultaneous equations $x + y + z = 6$ ; $x + 2y + 3z = 10$ ; $x + 2y + \lambda z = \mu$ have (i) no solution (ii) a unique solution and (iii) an infinite number of solutions. | [7M]    |
|     | b)    | Find the eigen values and the corresponding eigen vectors of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ .                                                                               | [7M]    |
|     |       | UNIT- II                                                                                                                                                                                                                         |         |
| 3.  | a)    | Verify Cayley – Hamilton theorem for the matrix $\begin{bmatrix} 2 & 1 & 2 \\ 5 & 3 & 3 \\ -1 & 0 & -2 \end{bmatrix}$ .                                                                                                          | [7M]    |
|     | b)    | Find the nature of the quadratic form, index and signature of $10x^2 + 2y^2 + 5z^2 - 4xy - 10xz + 6yz$ .                                                                                                                         | [7M]    |
|     |       | (OR)                                                                                                                                                                                                                             |         |
| 4.  | a)    | Find the $A^{-1}$ and $A^{4}$ of the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ . Cayley – Hamilton theorem                                                                              | [7M]    |
|     |       |                                                                                                                                                                                                                                  |         |
|     | b)    | Diagonalize the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ .                                                                                                                                     | [7M]    |
|     |       | UNIT- III                                                                                                                                                                                                                        |         |
| 5.  | a)    | Find the root of the equation $x^3 - 9x + 1 = 0$ by Bisection Method                                                                                                                                                             | [7M]    |
|     | b)    | Solve the system of equations using Gausss Seidal method<br>8x - y + z - 18 = 0; $2x + 5y - 2z - 3 = 0$ ; $x + y - 3z + 6 = 0$                                                                                                   | [7M]    |

1 of 2

| C. I. N. D201201        |                |                    |
|-------------------------|----------------|--------------------|
| Code No: <b>R201201</b> | ( <b>R20</b> ) | ( <b>SET - 1</b> ) |
|                         |                |                    |

(**OR**)

- 6. a) Find the root of the equation  $f(x) = x + \log x 2$  using Newton Raphson method. [7M]
  - b) Find the real root of  $x.e^{x} = 3$  using Regula falsi method. [7M]

#### **UNIT-IV**

7. a) Using Newton's forward interpolation formula find the value of f (1.6) for the [7M] following data

| Х | 1    | 1.4  | 1.8  | 2.2 |
|---|------|------|------|-----|
| Y | 3.49 | 5.96 | 5.96 | 6.5 |

b) Using Newton's Backward difference formula to find the area of a circle when the [7M] diameter is 105, the area for different values of diameter is given.

| d | 80   | 85   | 90   | 95   | 100  |
|---|------|------|------|------|------|
| А | 5026 | 5674 | 6362 | 7088 | 7854 |

### (**OR**)

8. a) Prove that 
$$\Delta \left[ \frac{f(x)}{g(x)} \right] = \frac{g(x)\Delta f(x) - f(x)\Delta g(x)}{g(x)g(x+h)}$$
. [7M]

b) Apply Lagrange's formula to find f(5) given that f(1) = 2, f(2)=4, f(3) = 8, f(4) = 16 [7M] and f(7) = 128.

#### UNIT- V

- 9. a) Evaluate  $\int_0^1 \frac{dx}{1+x^2}$  using Trapezoidal rule by taking i) h=0.2,ii) 0.25,iii) 0.125. [7M]
  - b) Using simple Euler's method, solve for y at x = 0.1 from  $\frac{dy}{dx} = x + y + xy$ , y(0) = [7M] 1 taking h = 0.025

### (**OR**)

- 10 a) Find y(0.1) and y(0.2) using Picard's method given that  $\frac{dy}{dx} = x + y, y =$  [7M] 1when x = 0
  - b) Using Runge Kutta method of fourth order find y(0.2), given  $\frac{dy}{dx} = y x$ , y(0) = [7M] 2 taking h = 0.1

# ( R20 )

# I B. Tech II Semester Regular/Supplementary Examinations, July/August-2023 MATHEMATICS-II

|    |     | (Common to All Branches)                                                                                                                                      |      |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | Tim | e: 3 hours Max. Marks: 7                                                                                                                                      | 0    |
|    |     | Answer any FIVE Questions One Question from Each Unit<br>All Questions Carry Equal Marks                                                                      |      |
| 1. | a)  | <b>UNIT -I</b><br>Find the rank of the matrix by reducing into normal form $\begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$ . | [7M] |
|    | b)  | Solve the following equations by Gauss Elimination method<br>2x + 4y + 2z = 15; $2x + y + 2z = -5$ ; $4x + y - 2z = 0$                                        | [7M] |
|    |     | (OR)                                                                                                                                                          |      |
| 2. | a)  | Define consistency. Solve the system of equations $x+y+z=6$ , $x-y+2z=5$ , $3x+y+z=-8$ .                                                                      | [7M] |
|    | b)  | Find the eigen values and the corresponding Eigen vectors of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$              | [7M] |
|    |     | UNIT- II                                                                                                                                                      |      |
| 3. | a)  | Verify Cayley-Hamilton theorem and hence find $A^{-1}$ , if $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ -1 & 2 & 2 \end{bmatrix}$ .                        | [7M] |
|    | b)  | Find the nature of the quadratic form, index and signature of $10x^2 + 2y^2 + 5y^2 - 4xy - 10xz + 6yz$ .                                                      | [7M] |
|    |     | (OR)                                                                                                                                                          |      |
| 4. | a)  | Find the $A^{-1}$ and $A^{4}$ of the matrix $A = \begin{bmatrix} 1 & -2 & -1 \\ -2 & -1 & 2 \\ -1 & 2 & -1 \end{bmatrix}$ . Cayley – Hamilton theorem         | [7M] |
|    | b)  | Diagonalize the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ .                                                         | [7M] |
|    |     | UNIT- III                                                                                                                                                     |      |
| 5. | a)  | Find the root of the equation $x^3 - 9x + 1 = 0$ by Bisection Method.                                                                                         | [7M] |
|    | b)  | Solve the system of equations using Gausss Seidal method<br>8x - y + z - 18 = 0; $2x + 5y - 2z - 3 = 0$ ; $x + y - 3z + 6 = 0$                                | [7M] |
|    |     | (OR)                                                                                                                                                          |      |
| 6. | a)  | Find the root of the equation $x=e^x$ using Newton Raphson method                                                                                             | [7M] |
|    | b)  | Find the positive root of xtanx = $-1$ using false position method.<br>1 of 2                                                                                 | [7M] |

|"|"|||"|"|||||

### Code No: **R201201**



### UNIT- IV

- 7. a) Write the forward differences, and the backward differences up to the fourth order. [7M]
  - b) In the table below the values of y are consecutive terms of a series of which the number [7M] 21.6 is the 6 th term. Find the first and tenth terms of the series.

| Х | 3   | 4   | 5    | 6    | 7    | 8    | 9    |
|---|-----|-----|------|------|------|------|------|
| у | 2.7 | 6.4 | 12.5 | 21.6 | 34.3 | 51.2 | 72.9 |

### (**OR**)

- 8. a) Prove any four relations between  $\Delta_{and} E$ 
  - b) Apply Lagrange's formula to find f (5) given that f (1) =2, f (2) =4, f (3) =8, f (4) = 16 and [7M] f(7) = 128.

### UNIT- V

9. a) A rocket is launched from the ground. It acceleration measured every 5 second I tabulated [7M] below. Find the velocity and the position of the rocket at t=4 second. Use trapezoidal rule as well as Simpson's rule.

| t    | 0    | 5     | 10    | 15    | 20    | 25    | 30   | 35   | 40   |
|------|------|-------|-------|-------|-------|-------|------|------|------|
| a(t) | 40.0 | 40.25 | 48.50 | 51.25 | 54.35 | 59.48 | 61.5 | 64.3 | 68.7 |

b) Compute y at x=0.25 by Euler Method given  $\frac{dy}{dx} = 2xy, y(0)=1$  [7M]

### (OR)

- <sup>10</sup> a) Find y (0.1) and y (0.2) using Picard's method given that  $\frac{dy}{dx} = x + y$ , y = 1 when  $x = \begin{bmatrix} 7M \end{bmatrix}$ 0.
  - b) Solve  $\frac{dy}{dx} = y + 1$  and y (0) =1 using Taylors series method. Also compute y(0.1). [7M]

\*\*\*\*

2 of 2

|"|"|||"|""|||'|

[7M]





### I B. Tech II Semester Regular/Supplementary Examinations, July/August-2023 MATHEMATICS-II

| Answer any FIVE Questions One Question from Each Unit<br>All Questions Carry Equal Marks<br>UNIT -1<br>a)<br>Find the rank of the matrix by reducing it to echelon form $A = \begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$ .<br>b) Solve completely the system of equations.<br>3x + 3y + 2z = 1;<br>x + 2y = 4;<br>10y + 3z = -2;<br>2x - 3y - 2 = 5;<br>(OR)<br>a) Write any seven properties of eigen values and eigen vectors.<br>b) Explain the general procedure for Gauss Elimination Method.<br>UNIT - II<br>a) State Cayley Hamilton theorem and verify the Same for the Matrix<br>$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$<br>b) Reduce the quadratic form, to the canonical form:<br>$8x^2 + 7y^2 + z^2 - 12xy - 8yz + 4xz$<br>(OR)<br>a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ .<br>b) Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ .<br>UNIT - III<br>a) Find the root of the equation $x^3 - x - 11 = 0$ by Bisection Method.<br>b) Solve the system of equations using Jacobi method<br>8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0<br>(OR)<br>a) Find the root of the equation $f(x) = xtanx+1$ using Newton Raphson method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Гime: З | (Common to All Branches)<br>3 hours Max                                                                                                        | . Marks: 70 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| a) Find the rank of the matrix by reducing it to echelon form $A = \begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$ .<br>b) Solve completely the system of equations.<br>3x + 3y + 2z = 1;<br>x + 2y = 4;<br>10y + 3z = -2;<br>2x - 3y - 2 = 5;<br>(OR)<br>a) Write any seven properties of eigen values and eigen vectors.<br>b) Explain the general procedure for Gauss Elimination Method.<br>UNIT- II<br>a) State Cayley Hamilton theorem and verify the Same for the Matrix<br>$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$<br>b) Reduce the quadratic form, to the canonical form:<br>$8x^2 + 7y^2 + z^2 - 12xy - 8yz + 4xz$<br>(OR)<br>a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ .<br>b) Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ .<br>(77)<br>UNIT- III<br>a) Find the root of the equation $x^3 - x - 11 = 0$ by Bisection Method.<br>b) Solve the system of equations using Jacobi method<br>8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0<br>(OR)<br>a) Find the root of the equation $f(x) = xtanx + 1$ using Newton Raphson method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | Answer any FIVE Questions One Question from Each Unit                                                                                          |             |
| b) Solve completely the system of equations.<br>3x + 3y + 2z = 1; $x + 2y = 4;$ $10y + 3z = -2;$ $2x - 3y - 2 = 5;$ (OR)<br>a) Write any seven properties of eigen values and eigen vectors.<br>b) Explain the general procedure for Gauss Elimination Method.<br>$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ b) Reduce the quadratic form, to the canonical form:<br>$8x^{2} + 7y^{2} + z^{2} - 12xy - 8yz + 4xz$ (OR)<br>a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ b) Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ -6 & 2 & -1 \end{bmatrix}$ UNIT- III<br>a) Find the root of the equation $x^{3} - x - 11 = 0$ by Bisection Method.<br>b) Solve the system of equations using Jacobi method<br>8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0 (OR)<br>a) Find the root of the equation $f(x) = xtanx + 1$ using Newton Raphson method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | UNIT -I                                                                                                                                        |             |
| Solve example of year of equations<br>3x + 3y + 2z = 1; $x + 2y = 4;$ $10y + 3z = -2;$ $2x - 3y - 2 = 5;$ (OR)<br>a) Write any seven properties of eigen values and eigen vectors.<br>b) Explain the general procedure for Gauss Elimination Method.<br>(7)<br>UNIT- II<br>a) State Cayley Hamilton theorem and verify the Same for the Matrix<br>$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ b) Reduce the quadratic form, to the canonical form:<br>$8x^2 + 7y^2 + z^2 - 12xy - 8yz + 4xz$ (OR)<br>a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ b)<br>Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ (7)<br>UNIT- III<br>a) Find the root of the equation $x^3 - x - 11 = 0$ by Bisection Method.<br>b) Solve the system of equations using Jacobi method<br>8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0 (OR)<br>a) Find the root of the equation $f(x) = xtanx + 1$ using Newton Raphson method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. a)   | Find the rank of the matrix by reducing it to echelon form A= $\begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$ | [7M]        |
| x + 2y = 4; $10y + 3z = -2;$ $2x - 3y - 2 = 5;$ (OR)<br>a) Write any seven properties of eigen values and eigen vectors.<br>b) Explain the general procedure for Gauss Elimination Method.<br>(7)<br>UNIT- II<br>a) State Cayley Hamilton theorem and verify the Same for the Matrix<br>$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$<br>b) Reduce the quadratic form, to the canonical form: $8x^{2} + 7y^{2} + z^{2} - 12xy - 8yz + 4xz$<br>(OR)<br>a) Find a Matrix P which diagonalizes the matrix<br>$\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$<br>b) Using Cayley hamilton theorem find inverse and A <sup>4</sup><br>$\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$<br>UNIT- III<br>a) Find the root of the equation $x^{3} - x - 11 = 0$ by Bisection Method.<br>b) Solve the system of equations using Jacobi method<br>8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0<br>(OR)<br>a) Find the root of the equation $f(x) = xtanx + 1$ using Newton Raphson method.<br>(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b)      | Solve completely the system of equations.                                                                                                      | [7M]        |
| $10y + 3z = -2;$ $2x - 3y - 2 = 5;$ (OR) a) Write any seven properties of eigen values and eigen vectors. b) Explain the general procedure for Gauss Elimination Method. (7) UNIT- II a) State Cayley Hamilton theorem and verify the Same for the Matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ b) Reduce the quadratic form, to the canonical form: $8x^{2} + 7y^{2} + z^{2} - 12xy - 8yz + 4xz$ (OR) a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ b) Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ UNIT- III a) Find the root of the equation $x^{3} - x - 11 = 0$ by Bisection Method. (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | •                                                                                                                                              |             |
| $2x - 3y - 2 = 5;$ (OR) a) Write any seven properties of eigen values and eigen vectors. b) Explain the general procedure for Gauss Elimination Method. (7) UNIT- II a) State Cayley Hamilton theorem and verify the Same for the Matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ b) Reduce the quadratic form, to the canonical form: $8x^{2} + 7y^{2} + z^{2} - 12xy - 8yz + 4xz$ (OR) a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$ b) Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}.$ UNIT- III a) Find the root of the equation $x^{3} - x - 11 = 0$ by Bisection Method. (7) b) Solve the system of equations using Jacobi method $8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0$ (OR) a) Find the root of the equation $f(x) = xtanx+1$ using Newton Raphson method. (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | •                                                                                                                                              |             |
| (OR)<br>a) Write any seven properties of eigen values and eigen vectors. [7]<br>b) Explain the general procedure for Gauss Elimination Method. [7]<br>UNIT- II<br>a) State Cayley Hamilton theorem and verify the Same for the Matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$<br>b) Reduce the quadratic form, to the canonical form: $8x^2 + 7y^2 + z^2 - 12xy - 8yz + 4xz$<br>(OR)<br>a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ .<br>b) Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ .<br>UNIT- III<br>a) Find the root of the equation $x^3 - x - 11 = 0$ by Bisection Method. [7]<br>b) Solve the system of equations using Jacobi method<br>8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0<br>(OR)<br>a) Find the root of the equation $f(x) = xtanx + 1$ using Newton Raphson method. [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | •                                                                                                                                              |             |
| a) Write any seven properties of eigen values and eigen vectors. [7]<br>b) Explain the general procedure for Gauss Elimination Method. [7]<br><b>UNIT- II</b><br>a) State Cayley Hamilton theorem and verify the Same for the Matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$<br>b) Reduce the quadratic form, to the canonical form: $8x^2 + 7y^2 + z^2 - 12xy - 8yz + 4xz$<br>(OR)<br>a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ .<br>b) Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ .<br>UNIT- III<br>a) Find the root of the equation $x^3 - x - 11 = 0$ by Bisection Method. [7]<br>b) Solve the system of equations using Jacobi method $8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0$<br>(OR)<br>a) Find the root of the equation $f(x) = xtanx + 1$ using Newton Raphson method. [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | •                                                                                                                                              |             |
| UNIT- II<br>a) State Cayley Hamilton theorem and verify the Same for the Matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$<br>b) Reduce the quadratic form, to the canonical form: $8x^2 + 7y^2 + z^2 - 12xy - 8yz + 4xz$<br>(OR)<br>a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ .<br>b) Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ .<br>UNIT- III<br>a) Find the root of the equation $x^3 - x - 11 = 0$ by Bisection Method.<br>b) Solve the system of equations using Jacobi method<br>8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0<br>(OR)<br>a) Find the root of the equation $f(x) = xtanx + 1$ using Newton Raphson method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2. a)   |                                                                                                                                                | [7M]        |
| a) State Cayley Hamilton theorem and verify the Same for the Matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ b) Reduce the quadratic form, to the canonical form: $8x^{2} + 7y^{2} + z^{2} - 12xy - 8yz + 4xz$ (OR) a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ b) Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ UNIT- III a) Find the root of the equation $x^{3} - x - 11 = 0$ by Bisection Method. b) Solve the system of equations using Jacobi method $8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0$ (OR) a) Find the root of the equation $f(x) = xtanx + 1$ using Newton Raphson method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b)      | Explain the general procedure for Gauss Elimination Method.                                                                                    | [7M]        |
| $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$<br>b) Reduce the quadratic form, to the canonical form:<br>$8x^2 + 7y^2 + z^2 - 12xy - 8yz + 4xz$<br>(OR)<br>a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ .<br>b) Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ .<br>UNIT- III<br>a) Find the root of the equation $x^3 - x - 11 = 0$ by Bisection Method.<br>b) Solve the system of equations using Jacobi method<br>8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0<br>(OR)<br>a) Find the root of the equation $f(x) = xtanx + 1$ using Newton Raphson method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | UNIT- II                                                                                                                                       |             |
| $8x^{2} + 7y^{2} + z^{2} - 12xy - 8yz + 4xz$ (OR) a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ . b) Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ . [7] UNIT- III a) Find the root of the equation $x^{3} - x - 11 = 0$ by Bisection Method. b) Solve the system of equations using Jacobi method<br>8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0 (OR) a) Find the root of the equation $f(x) = xtanx + 1$ using Newton Raphson method. [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3. a)   |                                                                                                                                                | [7M]        |
| a) Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ .<br>b) Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ .<br>UNIT- III<br>a) Find the root of the equation x <sup>3</sup> - x -11 = 0 by Bisection Method.<br>b) Solve the system of equations using Jacobi method<br>8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0<br>(OR)<br>a) Find the root of the equation f(x) = xtanx+1 using Newton Raphson method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b)      | Reduce the quadratic form, to the canonical form:<br>$8x^2 + 7y^2 + z^2 - 12xy - 8yz + 4xz$                                                    | [7M]        |
| b) Using Cayley hamilton theorem find inverse and $A^4 \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ .<br><b>UNIT- III</b><br>a) Find the root of the equation $x^3 - x - 11 = 0$ by Bisection Method.<br>b) Solve the system of equations using Jacobi method<br>8x - y + z - 18 = 0; $2x + 5y - 2z - 3 = 0$ ; $x + y - 3z + 6 = 0(OR)a) Find the root of the equation f(x) = xtanx+1 using Newton Raphson method.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | ( <b>OR</b> )                                                                                                                                  |             |
| UNIT- IIIa) Find the root of the equation $x^3 - x - 11 = 0$ by Bisection Method.[7]b) Solve the system of equations using Jacobi method<br>$8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0$ [7](OR)a) Find the root of the equation $f(x) = xtanx+1$ using Newton Raphson method.[7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4. a)   | Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ .                            | [7M]        |
| <ul> <li>a) Find the root of the equation x<sup>3</sup> - x -11 = 0 by Bisection Method.</li> <li>b) Solve the system of equations using Jacobi method<br/>8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0</li> <li>(OR)</li> <li>a) Find the root of the equation f(x) = xtanx+1 using Newton Raphson method.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b)      | Using Cayley hamilton theorem find inverse and A <sup>4</sup> $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ .        | [7M]        |
| b) Solve the system of equations using Jacobi method<br>8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0<br>(OR)<br>a) Find the root of the equation $f(x) = xtanx+1$ using Newton Raphson method. [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | UNIT- III                                                                                                                                      |             |
| 8x - y + z - 18 = 0; 2x + 5y - 2z - 3 = 0; x + y - 3z + 6 = 0 (OR)<br>a) Find the root of the equation $f(x) = xtanx+1$ using Newton Raphson method. [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5. a)   | Find the root of the equation $x^3 - x - 11 = 0$ by Bisection Method.                                                                          | [7M]        |
| a) Find the root of the equation $f(x) = x \tan x + 1$ using Newton Raphson method. [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b)      |                                                                                                                                                | [7M]        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | (OR)                                                                                                                                           |             |
| b) Explain Secant method. With Example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6. a)   | Find the root of the equation $f(x) = x \tan x + 1$ using Newton Raphson method.                                                               | [7M]        |
| r the second sec | b)      | Explain Secant method. With Example.                                                                                                           | [7M]        |

### 1 of 2

|"|"|||"|"||||

### 1"1"111"1"1111

### Code No: **R201201**

### **UNIT-IV**

**R20** 

- Define i) Interpolation ii) Finite difference iii) Forward and Back ward differences 7. a) [7M] with examples.
  - b) Find F(22)

| Х    | 20  | 25  | 30  | 35 | 40  | 45  |
|------|-----|-----|-----|----|-----|-----|
| F(X) | 354 | 332 | 291 | 26 | 231 | 204 |

### (**OR**)

8. a) Find Newton's divided differences polynomial for the data in the table given [7M] below

| Х    | -3  | -1  | 0   | 3   | 5    |
|------|-----|-----|-----|-----|------|
| F(X) | -30 | -22 | -12 | 330 | 3458 |

b) Apply Lagrange's formula to find f(3) given that f(0) = 1, f(1)=14, f(2)=15, f(4) = 15[7M] 5 and f(5) = 6, f(5) = 19.

### UNIT- V

9. a) Find  $\frac{dy}{dx}$  at x= 7.5 from the following table

| 1 | Х    | 7.47  | 7.48  | 7.49  | 7.50  | 7.51  | 7.52  | 7.53  |
|---|------|-------|-------|-------|-------|-------|-------|-------|
|   | F(X) | 0.193 | 0.195 | 0.198 | 0.201 | 0.203 | 0.206 | 0.208 |

Using Euler's method, solve for y at x = 0.1, x = 0.2, x = 0.3 from  $\frac{dy}{dx} = x^2 - y$ , [7M] b) y(0) = 1.

### (**OR**)

- 10 a) Find y(0.1) and y(0.2) using Picard's method given that  $\frac{dy}{dx} = 1 + xy$ , y =[7M] 1when x = 0.
  - Using Runge Kutta method of fourth order find y(0.1) given that  $\frac{dy}{dx} = e^x 1$ , [7M] b) y(0) = 0.

\*\*\*\*\* 2 of 2 **SET - 3** 

[7M]

[7M]





### I B. Tech II Semester Regular/Supplementary Examinations, July/August-2023 MATHEMATICS-II

(Common to All Branches)

| Time | : 3 h | (Common to All Branches)<br>Durs Max. Mark                                                                                                                                                                               | s: 70 |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      |       | Answer any FIVE Questions One Question from Each Unit<br>All Questions Carry Equal Marks                                                                                                                                 |       |
| 1.   | a)    | $UNIT - I$ If $A = \begin{bmatrix} 1 & 5 & 4 \\ 1 & 3 & 2 \\ 2 & 13 & 10 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$ then find the rank of A , Rank of B and rank of A+B. | [7M]  |
|      | b)    | Test the consistency and solve the equations.<br>x + 2y + 2z = 2;<br>3x - 2y - z = 5;<br>2x-5y + 3z = -4;<br>x + 4y + 6z = 0;                                                                                            | [7M]  |
|      |       | (OR)                                                                                                                                                                                                                     |       |
| 2.   | a)    | Fid the eigen values and eigen vectors of $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$                                                                                                        | [7M]  |
|      | b)    | Solve the following equation by Gauss Elimination Method.                                                                                                                                                                | [7M]  |
|      |       | x + 2y - z = 3; 3x - y + 2z = 1; 2x - 2y + 3z = 2; x - y + z = -1;                                                                                                                                                       |       |
|      |       | UNIT- II                                                                                                                                                                                                                 |       |
| 3.   | a)    | Verify Cayley Hamilton theorem for A= $\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ . Find $A^{-1}$ and $A^{8}$                                                                                                        | [7M]  |
|      |       | Reduce the quadratic form, to the canonical form:<br>$2x^{2} + 2y^{2} + 2z^{2} - 2xy - 2yz + 2xz$ by orthogonal transformation.                                                                                          | [7M]  |
|      |       | (OR)                                                                                                                                                                                                                     |       |
| 4.   | a)    | Find a Matrix P which diagonalizes the matrix $\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$ hence find $A^6$ .                                                                                                          | [7M]  |
|      | b)    | Using Cayley hamilton theorem find inverse and $A^4 \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ .                                                                                             | [7M]  |
|      |       | UNIT- III                                                                                                                                                                                                                |       |
| 5.   | a)    | Find the root of the equation $x^3 - 4x - 9 = 0$ by Regula falsi Method.                                                                                                                                                 | [7M]  |
|      | b)    | Explain i) Gauss- seidel method and ii) Jacobi method.                                                                                                                                                                   | [7M]  |
|      |       | 1 of 2                                                                                                                                                                                                                   |       |
|      |       |                                                                                                                                                                                                                          |       |

|               |           | Code No: <b>R201201 R20 SET - 4</b>                                                                      |        |
|---------------|-----------|----------------------------------------------------------------------------------------------------------|--------|
| ( <b>OR</b> ) |           |                                                                                                          |        |
| 6.            | a)        | Find the root of the equation $x^4 - x = 10$ using Newton Raphson method.                                | [7M]   |
|               | b)        | Explain Bisection method.                                                                                | [7M]   |
|               |           | UNIT- IV                                                                                                 |        |
| 7.            | a)        | Fit a polynomial of degree three which take the following values.                                        | [7M]   |
| 7.            | <i>a)</i> |                                                                                                          | [/101] |
|               |           | X         3         4         5         6           F(X)         6         24         60         120     |        |
|               |           |                                                                                                          |        |
|               | b)        | Estimate the population in 1895 from the following table.                                                | [7M]   |
|               |           | X 1891 1901 1911 1921 1931                                                                               |        |
|               |           | F(X)         46         66         81         93         101                                             |        |
|               |           | (OR)                                                                                                     |        |
| 8.            | a)        | Using Newton's divided differences formula find F (8).                                                   | [7M]   |
|               |           | X457101113F(X)481029490012102028                                                                         |        |
|               | b)        | Apply Lagrange's formula to find y(-2) given that                                                        | [7M]   |
|               |           | X-1023F(X)-8312                                                                                          |        |
| UNIT- V       |           |                                                                                                          |        |
| 9             | a)        |                                                                                                          | [7M]   |
| 2.            |           | Evaluate $\int_0^2 e^{-x^2} dx$ using Simpsons 1/3 <sup>rd</sup> rule taking h=0.25.                     |        |
|               | b)        | Using Taylor's method, find for y at x = 0.1, x=0.2 from $\frac{dy}{dx} = y^2 + x$ , y(0) = 1.           | [7M]   |
|               |           | (OR)                                                                                                     |        |
| 10            | a)        | Find y (1) using Picard's method given that $\frac{dy}{dx} = \frac{x^2}{y^2+1}$ , $y = 0$ when $x = 0$ . | [7M]   |
|               | b)        | Using Runge Kutta method of fourth order find y(0.1) given that $\frac{dy}{dx} = x + y$ ,<br>y(0) = 1    | [7M]   |

\*\*\*\* 2 of 2

# |"|"|||"|"|||||