

I B. Tech II Semester Regular/Supplementary Examinations, July/August-2023
MATHEMATICS-III
(Only Electrical and Electronics Engineering)

Tiı	Time: 3 hoursMax. Marks: 70		
		Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks	
		UNIT -I	
1.	a)	Find the directional derivative of $\phi = xy + yz + zx$ at A in the directional of	[7M]
		\overline{AB} where $A(1,2,-1)$ and $B(1,2,3)$	
	b)	Determine the constant 'a' if $\overline{f} = \frac{1}{x^2 + y^2} (x\overline{i} + ay\overline{j}) + \overline{k}$ is solenoidal.	[7M]
•	,	(OR)	
2.	a)	Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ where $\overline{F} = 2x^2 yz \ \overline{i} + x^2 y \ \overline{j}$ and C is the curve $x = t, y = t^2$,	[7M]
		$z = t^3$ from $t = 0$ to 1.	
	b)	Evaluate $\iint_{S} \overline{F} \cdot \overline{n} ds$ where $\overline{F} = 18z \overline{i} - 12\overline{j} + 3y \overline{k}$ and S is part of the plane.	[7M]
		2x + 3y + 6z = 12. Located in first octant.	
		UNIT - II	
3.	a)	Find inverse Laplace transform $\frac{s+5}{(s+2)}$.	[7M]
	b)	Using Convolution theorem find the inverse Laplace transform $\frac{1}{(2+2)}$	[7M]
		(OR) $(s^2+9)(s^2+1)$	
4	a)	$(\cos(t-a), t > a)$	[7M]
	h)	Find Laplace transform by using the definition $f(t) = \begin{cases} \cos(t - a), t > a \\ 0, t < a \end{cases}$	[7M]
	0)	Find $L\{\int_0^s te^{-2t}\cos 2t dt\}$	[/101]
		UNIT - III	
5.	a)	Find the Fourier series of $f(x) = e^{-x}$ in $(0,2\pi)$ and hence deduce that	[7M]
		$\frac{\pi}{2sinh\pi} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1}$	
	b)	Find the Half range sine series of $f(x) = \begin{cases} 1 & 0 < x < 1 \\ -1 & 1 < x < 2 \end{cases}$ in [0,2]	[7M]
		(OR)	
6.	a)	$\begin{bmatrix} x & if \ 0 < x < 1 \end{bmatrix}$	[7M]
		Find the Fourier cosine transform of $f(x) = \begin{cases} 2-x & \text{if } 1 < x < 2 \\ 0 & \text{if } x > 2 \end{cases}$	
	b)	Find the inverse Fourier finite sine transform of $f(x)$ if	[7M]
		$F_{s}(n) = \frac{2\pi (-1)^{n}}{n^{3}} in (0,\pi)$	
		1.60	

|"|"|||"|"||||

Code No: **R201206**

R20

[7M]

UNIT - IV

- Form the differential equation by elimination arbitrary function from 7. a) [7M] $f(x^2 + y^2, x^2 - z^2) = 0$
 - Solve the PDE $(y + xz)p (x + yz)q = x^2 y^2$ b) [7M] (OR)

8. a) Solve the PDE
$$p\sqrt{x} + q\sqrt{y} = \sqrt{z}$$

- Find complete and singular solutions of z = px + qy p 2q + 3. b) [7M]
 - UNIT V

9. a) Solve the PDE
$$(D^3 - 3D^2D^1 + 4D^{1^3})z = e^{x+2y}$$
 [7M]

b) Solve the PDE
$$(D^2 + DD^1 - 6D^{1^2})z = \cos(3x + y)$$
 [7M]
(OR)

10. a) Solve the PDE
$$(D^2 - D^{1^2})z = x^2 + y^2$$
 [7M]

b) Solve the PDE
$$3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$$
 by the method of variation of parameters. [7M]

2 of 2

1"1"111"1"1111