I B. Tech II Semester Supplementary Examinations, Jan/Feb-2024 MATHEMATICS-III

	T : 0	(Electrical and Electronics Engineering)	10
	Time: 3	hours Max. Marks: 7 Answer any five Questions one Question from Each Unit	/0
		Answer any five Questions one Question from Each Onli All Questions Carry Equal Marks	
UNIT - I			
1.	a)	Find the directional derivative of $\phi = x^2 - y^2 + 2z^2$ at A in the directional of AB where $A(1,2,3)$ and $B(5,0,4)$	[7M]
	b)	Prove that $div\left(\frac{\bar{r}}{r}\right) = \frac{2}{r}$	[7M]
		(OR)	
2.	a)	Find work done in moving particle in the force field $\overline{F} = 3x^2 \overline{i} + (2xz - y)\overline{j} + z\overline{k}$ along the space curve $x = 2t^3$, $y = t$, $z = 4t^2 - t$ from $t = 0$ to $t = 1$.	[7M]
	b)	Find the flux of vector function $\overline{F} = (x - 2z)\overline{i} (x + 3y)\overline{j} + (5x + y)\overline{k}$ through the upper side of the triangle ABC with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1).	[7M]
		UNIT - II	
3.	a)	Find inverse Laplace transform $\frac{s+4}{s(s-1)(s^2+4)}$	[7M]
	b)	Using Convolution theorem find the inverse Laplace transform $\frac{1}{s^2(1+s)^2}$ (OR)	[7M]
4.	a)		[7M]
	b)	By change of scale property find $L\{f(2t)\}$. If $L\{f(t)\} = \frac{s+15}{s^2+6s+25}$.	
	0)	Find $L\left\{t \int_0^t e^{-3t} dt\right\}$	[7M]
5	2)	UNIT - III $(x + \pi) if - \pi < x < 0$	[7]]
5.	a)	Find the Fourier series of f(x)= $\begin{cases} x + \pi & if - \pi < x < 0 \\ -x + \pi & if \ 0 < x < \pi \end{cases}$	[7M]
	b)	Find the Half range cosine series of $f(x) = e^x$ in [0,1]	[7M]
(OR)			
6.	a)	$\int x \qquad if \ 0 < x < 1$	[7M]
		Find the Fourier Sine transform of $f(x) = \begin{cases} x & \text{if } 0 < x < 1 \\ 2 - x & \text{if } 1 < x < 2 \\ 0 & \text{if } x > 2 \end{cases}$	
		$0 \qquad if \ x > 2$	

R20

b) [7M] Find the inverse Fourier finite cosine transform of f(x) if $F_{c}(n) = \frac{\cos\left(\frac{2n\pi}{3}\right)}{(2n+1)^{3}}$ in (0,1) **UNIT - IV** 7. Form the differential equation by elimination arbitrary function from [7M] a) $f(x+y+z, xy-z^2) = 0$ Solve the Partial Differential Equation (x + 2z)p + (4z - y)q = 2x + y. b) [7M] (**OR**) Solve the Partial Differential Equation $z^2 yp + z^2 xq = y^2 x$ 8. [7M] a) b) Find complete and singular solutions of $z = px + qy + 2\sqrt{pq}$ [7M] UNIT - V . ` . .

9. a) Solve the Partial Differential Equation
$$(D^3 - 4D^2D^1 + 4DD^{1^2})z = 2\sin(3x + 2y)$$
 [7M]

b) Solve the Partial Differential Equation
$$(D^2 + DD^1 - 6D^{1^2})z = x + y$$
 [7M]

(**OR**)

10. a) Solve the Partial Differential Equation
$$\left(D^{2} + 2DD^{1} + D^{1^{2}}\right)z = e^{2x+3y}$$
 [7M]

b) Solve the Partial Differential Equation $\frac{\partial u}{\partial x} + 4\frac{\partial u}{\partial y} = 0$, $u(0, y) = 3e^{-2y}$ y the method of variation of parameters. [7M]

2 of 2