

II B. Tech I Semester Regular Examinations, Feb/March - 2022 ELECTRO MAGNETIC FIELDS

(Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 70				
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	_	
1	a)	State Coulomb's law of force between any two point charges.	[7N	
	b)	Derive the expression for the total force experienced by a point charge due to infinite number to point charges around it.	[7N	
		Or		
2	a)	Derive Maxwell's first equation as applied to the electrostatics using Gauss law.	[7N	
	b)	A finite charge of 45 nC is uniformly distributed along positive z-axis. Two point charges of 75 nC are located at $(3,0,0)$ and $(0,3,0)$. Find the potential difference PQ if P is at $(3,4,0)$ and Q is at $(5,4,3)$.	[7N	
3	a)	Obtain the expression for torque on an electric dipole in an electric field.	[7]	
	b)	Derive the expression for electric potential due to a dipole.	[7]	
		Or		
ŀ	a)	Derive the Ohm's law in point form.	[7]	
	b)	A parallel plate capacitor consists of two square metal plates with 500mm side and separated by 10 mm. A slab of super ($\varepsilon_r = 4$) 6 mm thick is placed on the lower side of plate and air gap of 4 mm. Calculated 1ha capacitance of capacitor.	[7]	
5	a)	Obtain the expression for the magnetic field intensity due to infinite length current carrying conductor.	[7]	
	b)	A filamentary current of 10A is directed in from infinity to the origin on the positive x axis, and then back out to infinity along the position y axis. Use the Biot-Savarts law of find \overline{H} at P (0, 0,1)?	[7]	
		Or		
	a)	Show that the field strength at the end of a long solenoid is one-half of that at the	[7]	
	b)	centre. Derive the expression for force on a straight current carrying conductor place in a magnetic field.	[7	
,	a)	Derive an expression for mutual inductance using Newmann's formula.	[7]	
	b)	A toroid has 600 turns of coil, circular cross section of 6 cm^2 and a mean diameter of 38 cm. The permeability of the toroid is 1000. Calculate the inductance of the coil.	[7]	
		Or	r 	
)	a)	Derive the expression for energy stored in a magnetic field	[7]	
	b)	A solenoid of 500 turns has a length of 50 cm and radius of 10 cm. A steel rod of circular cross section is fitted in the solenoid coaxially and tightly. The relative permeability of steel is 3000. A dc current of 10 A is passed through the solenoid. Compute the inductance of the system, energy stored in the system and the mean flux density inside the solenoid.	[7]	

1 of 2

9	a)	State and explain the Faraday's laws of electromagnetic induction.	[7M]
	b)	From the Maxwell's equations, derive the expression for Poynting vector. Also, explain the applications of the poynting vector.	[7M]
		Or	
10	a)	Obtain the Maxwell's equations for conducting medium in integral and point forms.	[7M]

b) Derive the expression for one of the Maxwells equations, $\nabla \times E$, for time varying [7M] fields.

2 of 2