

II B. Tech I Semester Supplementary Examinations, July - 2022 ELECTRONIC DEVICES AND CIRCUITS

— •		(Electrical and Electronics Engineering)		
Time: 3 hours Max. Marks:				
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks		
1	a)	Explain about Fermi Dirac function and Fermi level in intrinsic and extrinsic semiconductors.	[8M]	
	b)	The voltage across a silicon diode at room temperature of 300°K is 0.62V when 3mA current flows through it. If the voltage increases to 0.80V, calculate the new diode current.	[6M]	
		Or		
2	a)	At room temperature of 300K, the Fermi level is 0.35 eV above the valence bond in a P-type semiconductor. When the temperature is increased to (i) 370K, and (ii) 410K, calculate the position of Fermi level.	[6M]	
	b)	Explain the volt-ampere characteristics of PN junction diode.	[8M]	
3	a)	With a neat sketch explain the V-I characteristics of Photodiode.	[7M]	
	b)	Explain the different operating regions of SCR.	[7M]	
		Or		
4	a)	A sinusoidal voltage whose $V_m = 25V$ is applied to a half-wave rectifier. The diode may be considered to be ideal and $R_L = 1.6 \text{ K}\Omega$ is connected as load. Determine the following: Peak value of current RMS value of current DC value of current Ripple factor	[8M]	
	b)	Draw the circuit diagram of a full-wave rectifier using center-tap transformer. Explain its working principle.	[6M]	
5	a)	Explain how transistor can be used as an amplifier with a neat diagram.	[8M]	
	b)	Explain about Ebers-Moll model of a transistor.	[6M]	
		Or		
6	a)	Derive the relationship among transconductance, drain resistance and amplification factor of a JFET.	[6M]	
	b)	Explain the construction and operation of JFET and draw its characteristics.	[8M]	
7	a) b)	Draw the fixed bias circuit of a BJT? Derive the equation for stability factor. Draw a circuit which uses a diode to compensate for changes in I_{CO} . Explain how stabilization is achieved in the circuit.	[7M] [7M]	

8	a) b)	Define Q-point and give its significance. Give the comparison between fixed bias, collector to base bias and self-bias	[3M] [5M]
	c)	circuits. Explain diode compensation against variation in base-emitter voltage V_{BE} .	[6M]
9		Derive the expressions for voltage gain, current gain, input impedance and output impedance of CE amplifier using exact and approximate analysis.	[14M]
		Or	
10	a)	A CE amplifier is drawn by a voltage source of internal resistance $r_s = 800 \Omega$, and the load impedance is a resistance $R_L = 1000\Omega$. The h-parameters are $h_{ie}=1K\Omega$, $h_{re}=2x10^{-4}$, $h_{fe}=50$ and $h_{oe}=25\mu$ A/V. Compute the current gain, input	[8M]

resistance, voltage gain and output resistance.b) Explain the principle of CS amplifier with the help of circuit diagram. [6M]

2 of 2