

(Com to ECE, EIE, ECT) Time: 3 hours Max. Marks: 70 Answer any FIVE Questions, each Question from each unit All Questions carry Equal Marks UNIT-I 1 a) Derive an expression for continuity equation and explain its importance. [7M] b) Define Fermi level and explain its significance in the energy band diagrams. [7M] OR a) Draw and explain the V-I characteristics of PN junction diode. 2 [7M] The reverse bias saturation current for a P-N junction diode (Silicon type) is $2\mu A$ [7M] b) at 300K. Calculate the dynamic and static resistances at 100mV forward bias at 300K. **UNIT-II** 3 a) Draw the symbol of Tunnel diode. Explain the construction and tunneling [10M] phenomenon of Tunnel diode. b) Explain how zener diode acts as a voltage regulator. [4M] OR With the help of neat circuit diagram, explain the operation of Bridge rectifier. [8M] 4 a) Compare the performance of inductive, L-section and π -section filters. [4M] b) What is peak inverse voltage (PIV) of a diode in a rectifier circuit? c) [2M] UNIT-III 5 Define α , β and γ of a transistor. Show how they are related to each other. [4M] a) b) Explain about transistor as an amplifier. [5M] Explain the operation of photo transistor. [5M] c) OR a) Explain the working of a depletion-type MOSFET. 6 [7M] For n-Channel JFET, V_{DS}=10V and V_{GS} is changed from 3V to 4V and drain [7M] b) current changed -4mA to 2nA. Find g_m , r_d , and μ if V_{DS} changes from 8 to 12V and I_D changes from 3 to 3.2mA at V_{GS} =2.5V.

7	a)	Explain about the need for biasing in electronic circuits. What are the factors affecting the stability factor?	[6M]	
	b)	A silicon transistor with β =70 is used in self biasing arrangement with $V_{CC} = 15V$, $R_C = 4.7K\Omega$. The operating point Q is at $V_{CE} = 8.2V$, $I_C = 1.2mA$. Find the values of R_1 and R_2 .	[6M]	
	c)	Define stability factor 'S'.	[2M]	
		OR		
8	a)	Explain how the Q-point is obtained graphically.	[5M]	
	b)	Explain diode compensation against variation in base-emitter voltage V_{BE} .	[6M]	
	c)	In a silicon transistor circuit with a fixed bias, $V_{CC} = 10V$, $R_C = 3K\Omega$, $R_B = 6K\Omega$, $\beta = 100$, $V_{BE} = 0.7V$. Find the stability factor.	[3M]	
UNIT-V				
9	a)	What are the benefits of h-parameters?	[2M]	
	b)	Draw the h-parameter equivalent circuit for a typical common base amplifier and derive expressions for A_i and A_v .	[8M]	
	c)	Define the three small-signal parameters of the FET. How are they inter-related?	[4M]	
		OR		
10	a)	Give the complete analysis of CE transistor amplifier circuit using h-parameters and derive the expressions for current gain, voltage gain, input impedance and output admittance.	[12M]	
	b)	Draw the small signal model of FET.	[2M]	

Time: 3 hours

(Com to ECE, EIE, ECT)

Max. Marks: 70

Answer any **FIVE** Questions, each Question from each unit All Questions carry **Equal** Marks

UNIT-I

1	a)	Explain about Hall effect.	[5M]
	b)	The Hall-coefficient of specimen doped silicon is found to be 3.66 x 10^{-4} m ³ C; the resistivity of the specimen is 8.93 x 10^{-3} Ω-m. Find the mobility and density	[4M]
	c)	of charge carriers assuming single carriers conduction. Explain about Law of junction.	[5M]
		OR	
2	a) b)	Briefly explain about Open circuited p-n junction and Biased p-n junction. A silicon diode has a saturation current of 6.5 μ A at room temperature 300K. Calculate the saturation current at 400K.	[10M] [4M]
		UNIT-II	
3	a)	Explain the construction and operation of SCR.	[8M]
	b)	Draw and explain the V-I characteristics of Varactor diode.	[6M]
		OR	
4	a)	With a neat sketch explain the operation of center tapped full wave rectifier and derive the expression for ripple factor.	[9M]
	b)	Determine the ripple factors of an L-section filter and Capacitive filter with C=40 μ F, V _{dc} =12V, R _L =10 K Ω , f=50Hz and L=10H used with FWR.	[5M]
		UNIT-III	
5	a)	Explain the various current components in BJT.	[7M]
	b)	Draw the Ebers-Moll model of a transistor for NPN transistor and explain the same.	[7M]
		OR	
6	a)	Define the following terms for a JFET: (i) The pinch-off voltage (ii) I _{DSS} (iii) I _{GSS} (iv) Drain resistance	[7M]
	b)	Explain the working of an enhancement-type MOSFET.	[7M]
	-,		[,]

7	a)	Draw the Fixed bias circuit and derive the expression for the stability factor S. What are the limitations of this circuit?	[8M]
	b)	What is thermal runaway in transistors? Obtain the condition for thermal stability in transistors.	[6M]
		OR	
8	a) b)	Explain why bias stabilization is needed in a transistor amplifier circuit. In a self biased circuit, the Q-point is established at $V_{CE} = 12V$ and $I_C = 2mA$. Determine R_E , R_1 and R_2 so that $S(I_{C0}) = 3$. Assume $\beta=50$, $V_{BE} = 0.7V$, $V_{CC}=22.5V$	[6M] [8M]
		UNIT-V	
9	a)	Draw the small signal model of FET and explain the significance of each element.	[5M]
	b)	A CE amplifier is drawn by a voltage source of internal resistance $r_s = 700 \Omega$, and the load impedance is a resistance $R_L = 1000\Omega$. The h-parameters are $h_{ie}=1K\Omega$, $h_{re}=2x10^{-4}$, $h_{fe}=50$ and $h_{oe}=25\mu$ A/V. Compute the current gain, input resistance, voltage gain and output resistance.	[9M]
		OR	
10	a)	Derive the expressions for voltage gain, current gain, input and output impedance of CC amplifier using exact and approximate analysis.	[10M]
	b)	Give the comparison of transistor amplifiers.	[4M]

2 of 2

Time: 3 hours

(Com to ECE, EIE, ECT)

Max. Marks: 70

Answer any FIVE Questions, each Question from each unit
All Questions carry Equal Marks
~~~~~~~

#### UNIT-I

1	a)	Explain energy band diagrams of intrinsic and extrinsic semiconductors with neat sketches.	[7M]		
	b)	Derive an expression for the Fermi level in an intrinsic semiconductor. Express electron and hole concentrations in terms of Fermi level.	[7M]		
		OR			
2	a)	Calculate the barrier capacitance of a Germanium p-n junction whose area is 1mm by 1mm and space charge thickness is $2 \times 10^{-4}$ cm. The dielectric constant of Germanium (relative to free space) is 16.	[7M]		
	b)	Explain the effect of temperature on characteristics of PN junction diode.	[7M]		
		UNIT-II			
3	a)	In what respect is an LED different form an ordinary PN junction diode? State the applications of LEDs.	[6M]		
	b)	Discuss the operation of UJT with necessary diagrams.	[8M]		
		OR			
4	a)	With neat sketch explain the operation of full wave rectifier with capacitor filter and derive the expression for ripple factor.	[10M]		
	b)	In a half-wave rectifier circuit, a voltage of 12 sin $\omega t$ is applied. The diode has a forward resistance of $10\Omega$ . The load is $1.5K\Omega$ . Determine $I_m$ and $V_{dc}$ .	[4M]		
		UNIT-III			
5	a)	Explain the operation of transistor in CE configuration and draw its input and output characteristics.	[10M]		
	b)	A certain transistor has a current gain of 0.99 in CB configuration. Calculate its current gain in the CE configuration and another transistor has $\beta$ =70, determine its $\alpha$ .	[4M]		
	OR				
6	a)	Explain how a FET is used as a voltage variable resistor.	[5M]		
	b)	Give the comparison between JFET and MOSFET.	[4M]		
	c)	An n-channel JFET has $I_{DSS} = 10$ mA and $V_P = -2V$ . Determine the drain source resistance $r_{DS}$ for (i) $V_{GS} = 0V$ and (ii) $V_{GS} = -0.5V$ .	[5M]		





7	a)	Explain the importance of biasing.	[4M]		
	b)	Define the three stability factors.	[3M]		
	c)	Design a self-bias circuit using silicon transistor to achieve a stability factor of 10, with the following specifications: $V_{CC}=15V$ , $V_{BE}=0.7V$ , $V_{CEQ}=8V$ , $I_{CQ}=4$ mA and $\beta=50$ .	[7M]		
		OR			
8	a)	Explain why the self-biasing arrangement cannot be used in an enhancement type MOSFET.	[4M]		
	b)	With a neat sketch, explain the operation of collector to base bias.	[6M]		
	c)	Explain how thermistor is used for bias compensation.	[4M]		
		UNIT-V			
9		Derive the expressions for voltage gain, current gain, input impedance and output impedance of CE amplifier using exact and approximate analysis.	[14M]		
	OR				
10	a)	Define the various h-parameters and give their units.	[3M]		
	b)	Draw the h-parameter model for common collector configuration.	[2M]		
	c)	Deduce the expressions for input impedance, output impedance and voltage gain	[9M]		

of Common Drain amplifier.

2 of 2



Т

(Com to ECE, EIE, ECT)

Ti	Cime: 3 hoursMax. Marks: 70		
		Answer any <b>FIVE</b> Questions, each Question from each unit All Questions carry <b>Equal</b> Marks	
		UNIT-I	
1	a)	What is meant by Fermi level in semiconductor? Where does the Fermi level lie in an intrinsic semiconductor? Prove that the Fermi level in an n-type material is much closer to the conduction band.	[7M]
	b)	Explain about Fermi-Dirac function.	[7M]
		OR	
2	a)	"The barrier potential developed across an open-circuited PN junction allows the flow of minority carriers". Explain how the current due to this flow of charge carriers is counterbalanced.	[7M]
	b)	Explain about the current components in PN junction diode.	[7M]
		UNIT-II	
3	a)	Draw and explain the V-I characteristics of Photodiode.	[6M]
	b)	A 10V zener diode is used to regulate the voltage across the variable load $R_L$ . $V_{DC}$ has the range $13V \le V_{DC} \le 16V$ and load current is $10 \text{ mA} \le I_L \le 85 \text{ mA}$ . Given $I_{zmin}$ as 15mA, calculate: (i) $R_S$ and (ii) zener diode power dissipation $P_Z$ .	[8M]
		OR	
4	a)	Sketch the circuit of a half-rectifier and explain its operation.	[6M]
	b)	A sinusoidal voltage whose $V_m = 25V$ is applied to a half-wave rectifier. The diode may be considered to be ideal and $R_L = 1.5 \text{ K}\Omega$ is connected as load. Determine the following: (i) Peak value of current (ii) RMS value of current (iii) Ripple factor	[6M]
	c)	Define form factor.	[2M]
		UNIT-III	
5	a)	Draw and explain the input and output characteristics of BJT in common base configuration.	[8M]
	b)	Explain about punch through/reach through in BJT.	[6M]
		OR	
6		Explain the construction and operation of n-channel JFET with neat sketches. Discuss its drain and transfer characteristics.	[14M]



		UNIT-IV	
7	a)	Explain why it is considered better to fix the quiescent operating point in the middle of the active region.	[4M]
	b)	Give the comparisons among fixed, collector to base and self-bias circuits.	[3M]
	c)	Explain about the transistorized bias compensation against the variation in base-emitter voltage $V_{BE}$ .	[7M]
		OR	
8	a)	What are the limitations in selecting the operating region in a transistor circuit?	[3M]
	b)	Draw the various biasing circuits used for JFET/MOSFET.	[6M]
	c)	An N-channel JFET with $V_P = 2.0V$ and $I_{DSS} = 1.75$ mA is used in an amplifier, using self-bias circuit. It uses a drain-source supply $V_{DD} = 25V$ . It is desired to bias the circuit at $I_D=1$ mA. Find (i) $V_{GS}$ and (ii) $R_S$ .	[5M]
		UNIT-V	
9	a)	Determine the current gain and input impedance when the transistor is connected in CB configuration with a load R _L =10K $\Omega$ , V _{CB} =10V, I _C =1.5mA, h _{ib} =20 $\Omega$ , h _{rb} =5x10 ⁻⁴ , h _{fb} =-0.98, h _{ob} =10 ⁻⁷ $\Omega$ ⁻¹ .	[6M]
	b)	Deduce the expressions for input impedance, output impedance and voltage gain of Common Source amplifier.	[8M]
		OR	
10	a)	Explain in detail about the small signal analysis of Common Source FET amplifier.	[10 <b>M</b> ]
	b)	Discuss the generalized analysis of transistor amplifier model using h-arameters.	[4M]