

II B. Tech I Semester Supplementary Examinations, July - 2023 MATHEMATICS - III

(Com to all branches)

Time: 3 hours

Max. Marks: 70

Answer any **FIVE** Questions, each Question from each unit All Questions carry **Equal** Marks

UNIT-I

1	a)	If $a = x + y + z$, $b = x^{2} + y^{2} + z^{2}$, $c = xy + yz + zx$ prove that	[7M]
		[grad a grad b grad c] =0	
	b)	Find work done in moving particle in the force field $\overline{F} = 3x^2 \overline{i} + (2xz - y)\overline{j} + z\overline{k}$	[7M]
		along the space curve $x = 2t^3$, $y = t$, $z = 4t^2 - t$ from $t = 0$ to $t = 1$.	
		OR	
2	a)	Show that the vector $(x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$ is irrotational and find	
		its scalar potential	[7M]
	b)	Evaluate $\iint (\operatorname{Curl} \overline{A}.\overline{n}) ds$ where $\overline{A} = y\overline{i} + (x - 2z)\overline{j} - xy\overline{k}$ and s is the surface of the	[7M]
		sphere $x^2 + y^2 + z^2 = 4$ above xy plane by stoke's theorem.	
		UNIT-II	
3	a)	If $L{f(t)} = log(\frac{s+3}{s+3})$ then find $L{f(2t)}$ using change of scale property	
	b)	$\begin{pmatrix} e^{-at} - e^{-bt} \end{pmatrix}$	[7M]
	0)	Find $L\left\{\frac{t}{t}\right\}$	[/1•1]
		OR	
4	a)	Find Laplace transform of $e^{-3t}(\cos 4t + 3\sin 4t)$	[7M]
	b)	Find inverse Laplace transform of $\frac{s+5}{s+5}$	[7M]
		($s-1$) ² ($s+2$)	
		UNIT-III	
5	a)	Find the Fourier series of $f(x) = \frac{1}{4} (\pi - x)^2$, $0 < x < 2\pi$	[7]]
		Hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots = \frac{\pi^2}{6}$	[/101]
	b)	Find the Half range cosine series of $f(x) = \begin{cases} 1 & 0 < x < 1 \\ -1 & 1 < x < 2 \end{cases}$ in [0,2]	[7M]
		OR	

|"|"|||"|"||||

6 a)

7

ode N	ro: R2021011 R20	(SET - 1)
a)	$\begin{cases} x & if \ 0 < x < 1 \\ 1 & x & if \ 1 < x < 2 \end{cases}$	[7M]
	Find the Fourier transform of $J(x)$ defend by $f(x) = \begin{cases} 1-x & \text{if } 1 < x < 2 \\ 0 & \text{if } x > 2 \end{cases}$	
b)	Find the Fourier cosine transform of $\frac{1}{1+x^2}$	[7M]
	UNIT-IV	
a)	Find the partial differential equation by eliminating arbitrary function from $z = f(x^2 - y) + g(x^2 + y)$	[7M]
b)	Solve the P.D.E $p^2q^3 = 1$	[7M]

OR

8	a)	Find the partial differential equation by eliminating arbitrary constants from	
		$x^2 + y^2 = (z - c)^2 \cot^2 \alpha$	[7M]
	b)	Solve the P.D.E $(x + 2z)p + (4z - y)q = 2x + y$	[7M]

UNIT-V

9 Solve
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 subject to the following conditions [14M]
(i) $u(0, y) = 0$ for all y
(ii) $u(a, y) = 0$ for all y
(iii) $u(x, \infty) = 0$, $0 \le x \le a$
(iv) $u(x, 0) = kx$, $0 \le x \le a$

OR

¹⁰ a) Solve the P.D.E
$$\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$$
 using method of separation of variables [7M]
b) Solve the P.D.E $(D^3 - 4D^2D^1 + 5DD^{1^2} - 2D^{1^3})_z = e^{2x+y} + e^{x+y}$ [7M]

b) Solve the P.D.E
$$\left(D^3 - 4D^2D^1 + 5DD^{1^2} - 2D^{1^3}\right)z = e^{2x+y} + e^{x+y}$$
 [7M]