

II B. Tech I Semester Regular/Supplementary Examinations, December-2023 RANDOM VARIABLES AND STOCHASTIC PROCESSES

		(Com to ECE, ECT)	
Ti	me: 3	3 hours N	ax. Marks: 70
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	
		UNIT-I	
1	a)	State and prove the properties of cumulative distribution function (CDF) of X	. [7M]
	b)	The random variable X has the discrete variable in the set $\{-1, -0.5, 0.7, 1.5, 3, 0.5, 0.7, 1.5, 0.7, 1.5, 0.7, 1.5, 0.7, 0.1, 0.2, 0.1, 0.4, 0.2\}$. Plot its distribution function and state is it a discrete or continuous distribution function.	} [7M]
		OR	
2	a)	(i) Define probability density function of a random variable.(ii) Show that the area under probability density function is unity	[7M]
	b)	Suppose there is an error probability of 0.05 per word in typing using an electronic type-writer machine. What is the probability that there will be more than one error in a page of 120 words?	[7M]
		UNIT-II	
3	a)	Consider the random variable X with probability density function (1)	[7M]
		$f_X(x) = \begin{cases} \left(\frac{-}{6}\right)x, & 2 \le x \le 4 \end{cases}$	
		0, otherwise	
		Find (i) $E[X]$, (ii) $E[X^2]$ and (iii) σ	
	b)	If $h_1(X)$ and $h_2(X)$ are two functions of a random variable X. Show that $E[c_1h_1(X)+c_2h_2(X)] = c_1E[h_1(X)] + c_2E[h_2(X)]$ Where c_1 and c_2 are real constants	[7M]
		where c_1 and c_2 are real constants.	
1	a)	Consider a random variable. X, with the PME as tabulated below	[7]11
-	<i>a)</i>	$\frac{x 0 1 2 3}{p(x) 1/8 1/8 1/4 1/2}$ Find	[/141]
		(i) mean value of X	
	b)	(ii) variance of X Let X be a continuous random variable with density $f_X(x)$, and a new random variable is formed by the transformation $Y=X^2$	n [7M]
		Show that for $y \ge 0$, $F_Y(y) = F_X(\sqrt{y}) - F_X(-\sqrt{y})$	
		UNIT-III	
5	a)	State and prove the properties of joint density function	[7M]

Code No: R2021044

SET - 1

	b)	 A joint sample space for two random variables X and Y has four elements (1,1), (2,2), (3,3) and (4,4). Probabilities of these elements are 0.1, 0.35, 0.05, and 0.5 respectively. (i)Determine through logic and sketch the distribution function F_{XY}(x,y) 	[7M]
		(ii) Find the probability of the event $\{x \le 2.5, y \le 6\}$ (iii) Find the probability of the event $\{x \le 3\}$	
		OR	
6	a)	Define the bivariate Gaussian random variable. List all the properties of jointly Gaussian random variables.	[7M]
	b)	The joint density of two random variables is given by	[7M]
		$f_{XY}(x,y) = \begin{cases} \frac{1}{6}; & 0 < x < 2, 0 < y < 3 \\ 0 & 0 & 0 \end{cases}$	
	0, elsewhere Find the joint density of U and V when $U = X - Y$ and $V = X + Y$		
		UNIT-IV	
7	a)	List all the properties of autocorrelation function	[7M]
	b)	What is ergodicity? Explain the concept of mean-ergodicity and autocorrelation-ergodicity with an example.	[7M]
OR			
8	a)	Explain about Poisson random processes.	[7M]
-	b)	Derive the relation between correlation and covariance of two random variables X and Y.	[7M]
UNIT-V			
9	a)	Find the mean and mean- square values of output $y(t)$ of an LTI system with input $x(t)$. Assume that $x(t)$ is a WSS process.	[7M]
	b)	Find the power spectral density and average power of X(t) with $R_{XX}(\tau) = \exp(- \tau)$	[7M]
OR			
10	a)	Define the following systems with applications. (i) Band – Limited process	[7M]
		(ii)Band – Limited Band pass process	
	b)	Show that the autocorrelation function and power spectral density form Fourier transform pair.	[7M]

II B. Tech I Semester Regular/Supplementary Examinations, December-2023 RANDOM VARIABLES AND STOCHASTIC PROCESSES

		(Com to ECE, ECT)	
Tir	ne: 3	B hours Max.	Marks: 70
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	
		UNIT-I	
1	a)	Define and explain the following with an example: (i) Discrete sample space (ii) Conditional probability (iii) Continuous random variable.	[7M]
	b)	Given that a random variable X has the following possible values, state if X is discrete, continuous or mixed i. {-20 <x<-5} ii. {10,12<x<=14,15,17) iii. {-10 for s>2 and 5 for s<=2, where 1<s<=6} iv. {4,3.1,1, -2}</s<=6} </x<=14,15,17) </x<-5} 	[7M]
		OR	
2	a)	Define the following and give one example for each: (i) Statistically independent events (ii) Mutually exclusive events (iii) Discrete sample space	[7M]
	b)	Two boxes are selected randomly. The first box contains 2 white balls and 3 black balls. The second box contains 3 white and 4 black balls. What is the probability of drawing a white ball?	[7M]
		UNIT-II	
3	a)	Show that the variance of a uniform random variable, U(a, b), is $(b-a)^2$	[7M]
	b)	¹² Let X is a random variable. Find the density function of $Y=exp(X)$ Carefully plot $f_Y(y)$	[7M]
		OR	
4	a)	Show that $E[X^n]$ can be computed from the characteristic function of a random variable.	[7M]
	b)	If $Y = aX + b$, where a and b are real constants, find the variance of Y.	[7M]
		UNIT-III	
5	a)	Explain how $E[X]$, $E[Y]$, $E[X^2]$ and $E[Y^2]$ are computed using joint probability density function of two random variables X and Y	[7M]
	b)	Show that if $X=Y$, then $Cov[X,Y]=Var[X]=Var[Y]$.	[7M]

OR

Code No: R2021044

6	a)	Explain about Linear Transforms of Gaussian Random Variables.	[7M]
	b)	Explain how the univariate averages E[X]and E[Y]are computed via the joint density function when(i) X and Y are discrete random variables(ii) X and Yare continuous random variables	[7M]
		UNIT-IV	
7	a)	List all the properties of autocorrelation function.	[7M]
	b)	Two random processes $X(t)$ and $Y(t)$ are given by $X(t) = Acos(\omega_o t)$ and	[7M]
		$Y(t) = Bsin(\omega_o t)$. Find the cross-correlation functions.	
		OR	
8	a)	Give the classification of random variables based on the type of random variable and time.	[7M]
	b)	Given a random process $X(t) = kt$, where A is a random variable uniformly distributed in the range (-1, 1). Is the process WSS?	[7M]
UNIT-V			
9	a)	Derive the relationship between cross-power spectral density and cross correlation function.	[7M]
	b)	If $X(t)$ is a stationary process, find the power spectrum of $Y(t)=A_0+B_0X(t)$ interms of the power spectrum of $X(t)$ if A_0 and B_0 are real constants.	[7M]
OR			
10	a)	Show that the output random process of an LTI system is also WSS process, when the input random process is a WSS process.	[7M]

b) State all the properties of cross-spectral densities. [7M]

2 of 2

II B. Tech I Semester Regular/Supplementary Examinations, December-2023 RANDOM VARIABLES AND STOCHASTIC PROCESSES

(Com to ECE, ECT) Time: 3 hours Max. Marks: 70 Answer any **FIVE** Questions each Question from each unit All Questions carry Equal Marks _____ **UNIT-I** a) Define conditional probability distribution function and write the properties. 1 [7M] b) Let A1, A2, A3,...., An be a collection of mutually exclusive events whose [7M] union is S. If B is an event such that $P(B) \neq 0$, then find P(B) in terms of elementary and conditional probabilities. OR 2 State and prove total probability theorem. [7M] a) b) In a group of 60 people, 27 like cold drinks and 42 like hot drinks and each [7M] person likes at least one of the two drinks. How many like both coffee and tea? **UNIT-II** State and prove the properties of variance of a random variable. 3 a) [7M] b) A random variable X is uniformly distributed over the interval (0, 1). Find the [7M] PDF of a new random variable, $Y=X^2$ OR 4 [7M] a) Define the following: (i) Skew (ii) Coefficient of skewness (iii) n^{th} central moment b) If Y = aX + b, where a and b are real constants, find the variance of Y. [7M] UNIT-III 5 a) List the properties of jointly Gaussian random variables. [7M] Show that if X = Y, then Cov[X, Y] = Var[X] = Var[Y]. [7M] b) OR Define joint characteristic function. Explain how the joint moments are obtained 6 [7M] a) from joint characteristic function. The joint density function of two random variables is given by [7M] b)

$f_{XY}(x,y) = \frac{1}{2(e-1)} \left[\frac{1}{x} + \frac{1}{y} \right]; \ 1 \le x \le e, 1 \le y \le e \text{ Find } \int_{1}^{e} \int_{1}^{e} f_{XY}(x,y) dy dx$

1 of 2

|""|"||"||"||||

Co	de N	o: R2021044 R20 SET	Γ-3
		UNIT-IV	
7	a)	Define the following: (i) First order stationarity (ii) Second order stationarity (iii) Nth order stationarity (iv) Wide-sense stationarity	[7M]
	b)	Prove that $ R_{XX}(\tau) \le \frac{1}{2} [R_{XX}(0) + R_{YY}(0)]$	[7M]
		OR	
8	a)	Give the classification of random processes based on statistical properties.	[7M]
	b)	What is ergodicity? Explain the concept of mean-ergodicity and autocorrelation-ergodicity with an example. UNIT-V	[7M]
9	a)	Find the mean and mean- squave values of output $y(t)$ of an LTI system with input $x(t)$. Assume that $x(t)$ is a WSS process.	[7M]
	b)	If X(t) is a stationary process, find the power spectrum of) $Y(t) = A0 + B0 X(t)$ in term of the power spectrum of X(t) if A0 and B0 are real constants.	[7M]
10	``		
10	a)	correlation function.	[/M]
	b)	Find the power spectral density and average power of X(t) with $R_{XX}(\tau) = \exp(- \tau)$	[7M]

2 of 2

II B. Tech I Semester Regular/Supplementary Examinations, December-2023 RANDOM VARIABLES AND STOCHASTIC PROCESSES (Com to ECE, ECT)

Time: 3 hours Max. Marks: 70 Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks ------**UNIT-I** a) Explain the following: (i) Point conditioning (ii) Interval conditioning 1 [7M] Two boxes are selected randomly. The first box contains 2 white balls and 3 b) [7M] black balls. The second box contains 3 white and 4 black balls. What is the probability of drawing a white ball? OR 2 (i) Define uniform random variable. [7M] a) (ii) Give the mathematical expressions for CDF and PDF of uniform random variable. (iii) Plot the CDF and PDF of uniform random variable. Suppose the waiting time of data packets in a computer network is an [7M] b) exponential random variable with PDF $f_X(x)=0.5\exp(-0.5x)u(x)$. (i) Plot $f_{\rm X}({\rm x})$ (ii) Find the P($0.1 < X \le 0.5$). **UNIT-II** 3 a) Find mean and variance of Gaussian random variable. [7M] b) A Gaussian random variable with variance 10 and mean 5 is transformed to [7M] $y=e^x$. Find the pdf of y. OR 4 State and prove the Chebychev's inequality theorem. [7M] a) b) Show that any characteristic function $\Phi_X(\omega)$ satisfies $\Phi_X(\omega) \leq \Phi_X(0) = 1$ [7M] **UNIT-III** a) Assume that Y = a + bX, $b \neq 0$. Show that Cov[X, Y] = bVar[X]. 5 [7M] The joint density function of two random variables is given by b) [7M] $f_{XY}(x,y) = \frac{1}{2(e-1)} \left[\frac{1}{x} + \frac{1}{y} \right]; \ 1 \le x \le e, 1 \le y \le e \ \operatorname{Find} \int_{1}^{e} \int_{1}^{e} f_{XY}(x,y) dy dx$ OR

1 of 2

|""|'|"||"|||

Code No:	R2021044
----------	----------

6

7

8

9

le N	Io: R2021044	SET - 4
a)	Define the following: (i) Joint moments about the origin (ii) Joint central moments (iii) Correlation coefficient	[7M]
b)	The joint density of two random variables is given by $f_{XY}(x,y) = \begin{cases} \frac{1}{6}; & 0 < x < 2, 0 < y < 3 \\ & 0, elsewhere \end{cases}$ Find the joint density of U and V, when $U = X - Y$ and $V = X + Y$	[7M]
	UNIT-IV	
a)	Give an example of a random process that satisfies the following:(i) Mean ergodicity(ii) Auto-correlation ergodicity	[7M]
b)	Prove that $ R_{XX}(\tau) \le \frac{1}{2} [R_{XX}(0) + R_{YY}(0)]$	[7M]
	OR	
a)	State all the properties of autocorrelation function.	[7M]
b)	Derive the relation between correlation and covariance of two random variabl X and Y.	es [7M]
	UNIT-V	
a)	Show that $S_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j\omega\tau} d\tau$	[7M]

[7M]

b) Derive the relation between PSD of output and PSD of input of an LTI system. [7M]

OR

- 10 a) Show that the autocorrelation function and power spectral density form Fourier [7M] transform pair.
 - b) Define the following random processes
 - (i) Band pass process
 - (ii) Band limited process
 - (iii) Narrow band process