

		II B. Tech I Semester Regular/Supplementary Examinations, December-2023 SWITCHINNG THEORY AND LOGIC DESIGN					
Tiı	(Com to ECE, EIE, ECT) Time: 3 hours Max. Marks: 70						
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks					
		UNIT-I					
1	a)	Convert the number $(127.75)_8$ to base 10, base 3, base 16 and base 2.	[7M]				
	b)	Perform subtraction on the following unsigned binary numbers using the 2's complement of the subtrahend (a) $(11011)_2$ - $(11001)_2$ (b) $(110100)_2$ - $(10101)_2$	[7M]				
		OR					
2	a)	Given the 4 bit data word 1011, generate the hamming code that corrects and detects single errors and also explain the error correction capability.	[7M]				
	b)	Express the function $Y = A + BC$ in canonical SOP and canonical POS form.	[7M]				
		UNIT-II					
3	a)	Simplify the following function using K-map. $F(A,B,C,D) = \Sigma(1,3,4,5,6,11,13,14,15)$	[7M]				
	b)	Assess a full adder using two half adders and an OR gate.	[7M]				
		OR					
4	a)	Design a code converter for BCD to gray code conversion	[7M]				
	b)	For the given function $T(w,x,y,z) = \Sigma (0,1,5,7,8,10,14,15)$ i) Show on the map ii) Find all prime implicants and indicate which are essential. iii) Find a minimal expression	[7M]				
		UNIT-III					
5	a)	Design a priority encoder using logic gates.	[7M]				
	b)	Implement the following functions using PLA with three inputs, four product terms and two outputs. F1 (A, B, C) = $\sum m$ (3, 5, 6, 7), F2 (A, B, C) = $\sum m$ (0, 2, 4, 7).	[7M]				
		OR					
6	a)	Implement $F=\Sigma(0,1,2,3)$ using decoder,	[7M]				
	b)	Draw the pin diagrams of Ics 7442 and 7447. Explain their functions.	[7M]				
		UNIT-IV					
7	a)	Draw the state diagram and characteristic table of Master Slave JK flip-flop.	[7M]				
	b)	Design a 3 bit synchronous up counter using T Flip-flops OR	[7M]				

1'''1'1'''11''''1111

8	a)	Design a 4-bit ring counter and mention its applications.	[7M]
	b)	Convert SR flip – flop to T flip – flop.	[7M]
		UNIT-V	
9	a)	Identify a Mealy model of sequence detector to detect the pattern 1001.	[7M]
	b)	Define equivalent state. Write the benefits of state reduction.	[7M]

OR

10 a) Reduce the number of states in the following state table and tabulate the reduced [7M] state table shown below:

Present	Next state		Output		
state	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
а	f	b	0	0	
b	d	С	0	0	
С	f	е	0	0	
d	g	а	1	0	
е	d	С	0	0	
f	f	b	1	1	
g	g	h	0	1	
h	g	а	1	0	

b) Differentiate between Mealy and Moore machine with examples.

[7M]

2 of 2

|'''|'|''||

	II B. Tech I Semester Regular/Supplementary Examinations, December-2023 SWITCHINNG THEORY AND LOGIC DESIGN			
Tiı	me: 3	(Com to ECE, EIE, ECT) 3 hours Max. Marks	s: 70	
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks		
		UNIT-I		
1	a)	Perform the following conversions	[9M]	
	b)	Rewrite the expression $A+BC$ in standard product of sum form.	[5M]	
		OR		
2	a) b)	What you mean by weighted code? Explain with suitable examples. Simplify the following function and realize using universal gates $F(A,B,C) = A'BC' + ABC + B'C' + A'B'$	[7M] [7M]	
		UNIT-II		
3	a)	Simplify the following using Tabular method. $F(A,B,C,D) = \Sigma(3,7,8,12,13,15) + d\Sigma(9,14)$	[7M]	
	b)	List the advantages and disadvantages of minimization of Boolean Function using K-Map	[7M]	
		OR		
4	a)	Explain how a look ahead adder speeds up the addition process. Draw the architecture	[7M]	
	b)	Discuss in detail, the working of full adder logic circuit.	[7M]	
		UNIT-III		
5	a) b)	Design a full adder using Multiplexer. Draw and explain the logic diagram of a 2-to-4 decoder using NOR gates only. Include an enable input.	[7M] [7M]	
		OR		
6	a)	Implement f (A,B,C,D) = $\sum (0,1,3,5,6,8,9,11,12,13)$ using PAL and explain its procedure.	[7M]	
	b)	Explain the working of a De-multiplexer with the help of an example.	[7M]	
		UNIT-IV		
7	a) b)	Explain the operation, state diagram and characteristics of a T-Flip flop. Write the differences between synchronous and asynchronous counters.	[7M] [7M]	

OR

1 of 2

SET - 2

- 8 a) Design and explain the working of a synchronous MOD-5 counter. [7M]
 b) Explain the term Race around condition. How is it satisfied by Master-slave [7M]
 - b) Explain the term Race around condition. How is it satisfied by Master-slave [7M] Flip-Flops.

UNIT-V

9 a) Convert the following Mealy machine into a corresponding Moore machine: [10M]

		Next Sta	te				
Present State	а		b				
	State	O/P	State	O/P			
q1	qı	1	q ₂	0			
q ₂	q₄	1	q4	1			
q3	q ₂	1	q_3	1			
q4	q3	0	q1	1			

b) What is FSM state? List its two basic types.

[4M]

OR

- 10 a) What is meant by state diagram? Define how state assignment is important in a [7M] sequential circuit design. Describe with a suitable example.
 - b) Design a FSM which detects 0011 pattern and set z = 1 for all other patterns $z = [7M]_0$

2 of 2

II B. Tech I Semester Regular/Supplementary Examinations, December-2023

Ti	Fime: 3 hours Max. Marks: 70				
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks			
		UNIT-I			
1	a)	Assess the following Excess-3 numbers into decimal numbers. (i) (1011) ₂ (ii) (1001 0011 0111) ₂	[7M]		
	b)	Simplify the following: i) $(A + AC + B)$ ii) $F = AB(C + C) + AB$ iii) $F = (X + Y)(X + Z)$	[7M]		
		OR			
2	a)	Given that a frame with bit sequence 1101011011 is transmitted, it has been received as 1101011010. Examine the method of detecting the error using Hamming code.	[7M]		
	b)	What are the universal gates? Why they are called universal gate?	[7M]		
		UNIT-II			
3	a)	Simplify the Boolean function using K map technique: $F = \pi M (3, 4, 6, 7, 11, 12, 13, 14, 15).$	[7M]		
	b)	Explain a binary adder, which can be used to add two binary numbers?	[7M]		
		OR			
4	a)	Design a Half Subtractor.	[7M]		
	b)	By using tabulation methods simplify the function: Z = f(A, B, C) = A'B'C' + A'B'C + AB'C' + AB'C	[7M]		
		UNIT-III			
5	a) b)	Design 32:1 Mux using two 16:1 Muxs and one 2:1 Mux. What is PAL? How does it differ from PROM and PLA?	[7M] [7M]		
		OR			
6	a)	Draw the logic circuit of a 3 to 8 decoder and explain its working.	[7M]		
	b)	Draw the logic diagram of 1 to 4 line demultiplexer and discuss on it.	[7M]		
		UNIT-IV			
7	a)	Design a BCD counter using JK Flip-Flops.	[7M]		
	b)	Analyze SISO and PIPO shift registers with neat logic diagram.	[7M]		
		OR			

1 of 2

Code No: R2021042

SET - 3

[6M]

8 a) Implement D and T FFs using JK flip flop. Tabulate the characteristics equation [7M] of the three flip flops.
b) Draw the pin diagrams of Ics 7490 and 74121. Explain their functions. [7M]

UNIT-V

- 9 a) A sequential circuit with two D flip flops A and B, input X and output Y is [8M] specified by the following next state and output equations: A (t+1) = AX+BX; B (t+1) = A'X; Y = (A+B) X'.
 - (i) Construct the state table.
 - (ii) Draw the state diagram.

b) Write the usage of Mealy machine with example.

OR

10 a) For the given state diagram, prepare the state table, state assignment and state [9M] reduction tables.

b) Examine the state assignment problem. Define its rule. [5M]

2 of 2

II B. Tech I Semester Regular/Supplementary Examinations, December-2023

		(Com to ECE, EIE, ECT)			
Ti	Time: 3 hours Max. Marks: 70				
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks			
		UNIT-I			
1	a)	Describe the procedure to get the Hamming code for the binary word 1101100.	[7M]		
	b)	State and Prove the postulates of Boolean Algebra.	[7M]		
		OR			
2	a)	Deduce $FACE_{16}$ in its binary, octal and decimal equivalent.	[7M]		
	b)	Interpret OR gate and AND gate using NAND gates.	[7M]		
		UNIT-II			
3	a)	Simplify the following function using Karnaugh Map.	[7M]		
	b)	$F(W,X,Y,Z) = \sum m(0,1,3,9,10,12,13,14) + \sum d(2,5,6,11).$	[7]]		
	0)		[/101]		
		OR			
4	a)	Design a 4 bit BCD to Excess-3 code converter	[7M]		
	b)	Use the K-map method to simplify the following 5-variable function $F = \sum (3,6,7,8,10,12,14,17,19,20,21,24,25,27,31)$	[7M]		
		UNIT-III			
5	a)	Design a 64:1 MUX using 8:1 MUXs.	[7M]		
	b)	Draw the pin diagrams of IC 7485 and IC 74154. Explain their functions.	[7M]		
		OR			
6	a)	Design a 4 bit comparator circuit using logic gates.	[7M]		
	b)	Implement the following Boolean function using PLA	[7M]		
		$F_1(w.x.y.z) = \sum (0,1,3,5,9,13)$			
		$F_2(w, x, y, z) = \sum (0, 2, 4, 5, 7, 9, 11, 15)$			
		UNIT-IV			

7 a) Analyze the circuit of a SR flip flop and realize SR flip flop using D flip flop. [7M] b) Draw the pin diagrams of IC 7474 and IC 7475. Explain their functions [7M]

b) Draw the pin diagrams of IC 7474 and IC 7475. Explain their functions. [7M]

OR

1 of 2

- 8 a) Describe the design procedure with neat diagram about 4 bit bidirectional shift [7M] register with parallel load.
 - b) Draw a block diagram of Modulo 10 ripple counter and explain its timing [7M] diagram.

UNIT-V

- 9 a) Show the state transition diagram of a sequence detector circuit that detects [7M] '1010' from input data stream using Moore model.
 - b) A sequential circuit has one input and one output. The state diagram is shown [7M] below:

Design the sequential circuit with D flip-flop

OR

10 a) Convert the following Moore machine into a corresponding Mealy machine: [7M]

Present State	Next	Output	
r lesent state	w=o	w=1	Output
Α	В	С	1
В	D	F	1
С	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	F	E	0

b) Write the usage of Moore machine with example.

[7M]