SET - 1

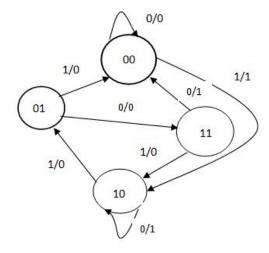
II B. Tech I Semester Supplementary Examinations, July - 2022 SWITCHINNG THEORY AND LOGIC DESIGN

(Com to ECE, EIE, ECT)

Time: 3 hours Max. Marks: 70

		Answer any FIVE Questions each Question from each unit	
		All Questions earry Equal Marks	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1	a)	Convert the following (i) $(123.589)_{10} = ( )_8$ . (ii) $(10110111111101.10101)_2 = ( )_{16}$	[7M]
	b)	Represent +35 and -35 in sign magnitude, sign 1's complement and sign 2's complement representation.	[4M]
	c)	Convert (525) ₁₀ into its Excess-3 code.	[3M]
		Or	
2	a)	Find the complement of the following and show that F.F'=0 and F+F'=1  (i) F=XY'+X'Y  (ii) F=(X+Y'+Z)(X'+Z')(X+Y)	[8M]
	b)	What are universal gates? Why these gates are called as universal gates?	[3M]
	c)	What are the applications of Boolean algebra?	[3M]
3	a)	Find the minimal sum of products for the Boolean expression, $f = \sum m(1,2,3,5,7,8,9,10,12,14,15)$ , using the K-Map.	[10M]
	b)	What is the advantage of tabular method?	[2M]
	c)	Explain the term prime implicant.	[2M]
		Or	
4	a)	Design and implement 4-bit Binary Adder/subtractor.	[10M]
	b)	What is a full/subtractor? Write its truth table.	[2M]
	c)	List the applications of full adders.	[2M]
5	a)	With the help of a logic diagram and a truth table, explain a 3-line to 8-line decoder.	[7M]
	b)	Draw the pin diagram of an IC 7447 and also write its truth table.	[4M]
	c)	What is multiplexer? List the applications of multiplexers.	[3M]
		Or	
6	a)	Design a combinational circuit using PROM that accepts 3-bit binary number and generates its equivalent excess-3 code.	[10M]
	b)	Briefly explain about PLDs.	[4M]

7 a) Design a 4-bit synchronous counter with T flip-flops. [10M]


b) Write a short notes on
(i)IC 7490
(ii)IC 74121

Or

- 8 a) Convert SR flip-flop to JK flip-flop with an example. [10M]
  - b) Write the differences between combinational and sequential circuits. [4M]
- 9 a) With the help of State table and State diagram explain the operation of Sequence [7M] generator.
  - b) With an example explain the procedure for conversion of Moore machine to Mealy machine. [7M]

Or

10 a) A sequential circuit has one input and one output .The state diagram is shown below. Design the sequential circuit with RS flip-flop. [10M]



b) Distinguish between Moore and Mealy Machines.

[4M]