

II B. Tech I Semester Regular/Supplementary Examinations, January-2023 SWITCHINNG THEORY AND LOGIC DESIGN (Com to ECE, EIE, ECT)

Time: 3 hours Max. Marks: 70 Answer any FIVE Questions, each Question from each unit All Ouestions carry Equal Marks UNIT-I a) Given the 8bit data word 01011011, generate the 12 bit composite word for the 1 [7M] hamming code that corrects and detects single errors. b) Explain the logic gates with it symbol and truth table. [7M] OR 2 a) [7M] The binary numbers listed have a sign bit in the left most position and, if negative numbers are in 2's complement form. Perform the arithmetic operations indicated and verify the answers. (ii) 001110 + 110010 (iii) 111001 - 001010 (i) 101011 + 111000(iv) 101011 - 100110 b) Convert the following to Decimal and then to octal [7M] (i) (125F)16 (ii) (10111111)2(iii) (4234)10 UNIT-II 3 [7M] a) Find the complement and duality of given function below and then reduce minimum number of literals in each case $F = [(\overline{ab}), a][(\overline{ab}), b]$ Simplify the following to minimum number of literals b) [7M] (i) $\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$ (ii) $\bar{x}\bar{y}$ +xy+ $\bar{x}y$ OR 4 a) Design a full adder by using two half adders [7M] b) With neat block diagram, explain BCD adder circuit. [7M] UNIT-III 5 Design and implement Full adder with PLA. [7M] a) Write the comparisons between PAL, PLA. b) [7M] OR 6 Design an 8 to 3 priority encoder. [7M] a) b) Draw the pin diagram and explain the functions of ICs 7442 and 7447. [7M]

Code No: R2021042

UNIT-IV

7	a)	What is a flip-flop? Design the basic flip-flop using NOR gates and explain.				
	b)	What is an excitation table? Write the excitation tables for JK and T flip-flops.	[7M]			
	OR					
8	a)	Write the differences between synchronous and Asynchronous Counters.	[7M]			
	b)	Explain the operation of 4-bit asynchronous counter.	[7M]			
	UNIT-V					
9	a)	Draw the diagram of Mealy type FSM for serial adder.	[7M]			
	b)	Draw the circuit for Moore type FSM.	[7M]			
	OR					
10	a)	Write the difference between mealy and moore machines.	[7M]			
	b)	Convert the given mealy machine to moore machine by using transition diagram	[7M]			

State	Input		Out
	a	b	put
А	В	А	0
В	В	С	0
С	В	D	0
D	В	А	1

1

2

3

4

5

6

II B. Tech I Semester Regular/Supplementary Examinations, January-2023 SWITCHINNG THEORY AND LOGIC DESIGN

(Com to ECE, EIE, ECT) Time: 3 hours Max. Marks: 70 Answer any FIVE Questions, each Question from each unit All Ouestions carry Equal Marks **UNIT-I** Convert the given expression in standard SOP form f(A,B,C) = AC+BA+BC. a) [7M] Convert the given expression in standard POS form y=A.(A+B+C). b) [7M] OR Subtract the following numbers in 9's complement form [7M] a) (i)72532-03250 (ii) 03250 -72532 b) Explain how 1's complement and 2's complement of a binary number is [7M] obtained? Illustrate by an example. UNIT-II [7M] a) Reducing the following function using K- map $F(A,B,C,D) = \sum m(5,6,7,8,9,12,13,14)$ b) Implement the following Boolean function using AND, OR and inverter gates [7M] $\overline{(AB + CD + E)}$ OR Design a combinational circuit that access a 3 bit number and generates output a) [7M] number which is equal to square of the input. Design an excess-3 adder using 4-bit parallel binary adder and logic gates. [7M] b) **UNIT-III** Implement the following Boolean functions using PLA. $A(x,y,z)=\sum_{i=1}^{n}(1,2,4,6)$, [7M] a) $B(x,y,z) = \sum (0,1,6,7)$, and $C(x,y,z) = \sum (2,6)$. b) Design a combinational circuit using PROM that accepts 3-bit binary number [7M] and generates its equivalent excess -3 code. OR Design a 16×1 MUX by using two 8×1 MUX. [7M] a)

Draw the pin diagrams and their functions of ICs 7485 and 74154. b) [7M]

UNIT-IV

- Draw the diagram of master slave JK flip-flop. 7 a) [7M]
 - Convert the JK flip-flop into a T flip-flop. [7M] b)

OR

|'''|'|'|''|''||

C	ode	No: R2021042	R20	SET - 2	2)
8	a)	Draw the logic diagram of a SR late using excitation table.	ch using NOR gates. Explain its Opera	tion	
	b)	Discuss the Johnson counter with near	t diagram.	[7N	/]
		L	JNIT-V		
9	a)	Draw the circuit for Moore type FSM		[7N	4]
	b)	Draw the state diagram of mod-8 Up its state table.	- Down counter in Moore model and ob	tain [7N	1]
			OR		
10	a)	What is meant by sates reduction? reduction in sequential circuits?	Explain what are the advantages of s	state [7N	1]
	b)	Draw a state diagram of a sequence d	etector which can detect 101.	[7N	<i>[</i>]

		II B. Tech I Semester Regular/Supplementary Examinations, January-2023 SWITCHINNG THEORY AND LOGIC DESIGN	
		(Com to ECE, EIE, ECT)	
]	Time:	3 hours Max. Marks: 70	
		Answer any FIVE Questions, each Question from each unit All Questions carry Equal Marks	
		UNIT-I	
1	a)	Implement a 3 - level logic circuit using NOR gates for $F=(AB + CD)(A + B)$	[7M]
	b)	Represent and draw the following Boolean function using minimum number of Basic gates. i) $(AB + AB') (AB)'$ ii) $[(ABD(C + D + E)) + (A + DBC)'] (ABC + (CAD)')$	[7M]
		II) [(ADD(C + D + D)) + (A + DDC)] (ADC + (CAD))	
\mathbf{a}		$\mathbf{O}\mathbf{K}$	[7]] /]
Ζ	a)	1's complement, 2's complement forms using 4-bits	[/]VI]
	b)	Explain about weighted and Non weighted codes.	[7M]
	,	I INIT-II	
2	-)	0111-11	Г Л (1)
3	a)	Reduce the following function using K- map $F = \pi M(3,4,5,6,7,12,13) + d(8,10,14,15)$	[/M]
	b)	Draw logic diagram of Ex-OR and EXNOR gate using NAND gate and prove it using Boolean equation and truth table.	[7M]
		OR	
4	a)	Write the differences between sequential and combinational circuits with an example.	[7M]
	b)	Design a 4-Bit Adder subtractor circuit by using a full adder.	[7M]
		UNIT-III	
5	a)	Design a 1 to 8 Demultiplexer with diagram and truth table.	[7M]
	b)	Design a 4-bit digital comparator.	[7M]
		OR	
6	a)	Design a BCD to excess -3 code converter and implement using suitable PLA.	[7M]
	b)	Implement the following functions using a PROM i) $F(w,x,y,z)=\sum(1,9,12,15)$ ii) $G(w,x,y,z)=\sum(0,1,2,3,4,5,7,8,10,11,12,13,14,15)$	[7M]

C	ode	No: R2021042 R20 SH	ET - 3			
		UNIT-IV				
7	a)	Explain about the operation of Clocked RS flip flop.	[7M]			
	b)	Design a D type positive edge triggered flip-flop. Explain the operation of the sequential circuit when clock pulse equal to 1.	[7M]			
		OR				
8	a)	Draw the logic diagram of a JK flip - flop and using excitation table explain its operation.	[7M]			
	b)	Draw and explain the operation of 4 bit ring counter.	[7M]			
		UNIT-V				
9	a)	Discuss about the procedure of Mealy to Moore conversion.	[7M]			
	b)	Explain about sequential circuits, state table and state diagram.	[7M]			
	OR					
10	a)	Write the differences between synchronous and asynchronous counters	[7M]			
	b)	Convert the following Moore machine to mealy machine by using transition diagram				
		State Input Out put				

State	mput		Out put
	0	1	
А	В	А	b
В	В	С	b
С	В	Α	a

II B. Tech I Semester Regular/Supplementary Examinations, January-2023 SWITCHINNG THEORY AND LOGIC DESIGN (Com to ECE, EIE, ECT) Time: 3 hours Max. Marks: 70 Answer any FIVE Questions, each Question from each unit All Ouestions carry Equal Marks UNIT-I a) How do you convert a gray number to binary? Generate a 4-bit gray code 1 [7M] directly using the mirror image property. b) Write the comparisons between 1's complement and 2's complement. [7M] OR 2 a) What are the differences between canonical form and standard form? Explain [7M] b) Convert the following expression into SOP and POS [7M] (i) $(AB+C)(B+\overline{C}D)$ $(ii)\bar{x}+(x+\bar{y})(y+\bar{z})$ **UNIT-II** Simplify the following 3 a) [7M] (i)AB+ BC+ $A^{l}C = AB + A^{l}C$ (ii) $(X+Y).(Y^{1}+Z) = X$ b) Simplify the following using K- map and implement the same using NAND [7M] gates. Y (A, B, C) = $\Sigma(0,2,4,5,6,7)$ OR Design a Binary to BCD code converters using K-map. 4 a) [7M] b) Convert the BCD to XS-3 and XS-3 to BCD by using a full adder [7M] UNIT-III a) Design and implement Full adder with PLA. 5 [7M] b) Design a combinational circuit using PROM. The circuit accepts a 3 bit number [7M] and generates an O/p binary number equal to square of input number. OR 6 [7M] a) Realize the following four Boolean functions using PAL. $F1(w,x,y) = \sum m(1,2,4,6)$ $F2(w,x,y) = \sum m(0,1,6,7)$ $F3(w,x,y) = \sum m(2,6)$ b) Implement the following functions using a PROM: i) $F(w,x,y,z)=\sum(1,9,12,15)$ [7M] ii) $G(w,x,y,z) = \sum (0,1,2,3,4,5,6,7,10,11,12,13,14,15)$

UNIT-IV

7	a)	What is Race condition and explain about the operation of clocked RS flip-flop	[7M]
	b)	Convert the JK Flip flop into RS flip-flop.	[7M]
		OR	
8	a)	What is a counter? implement and explain the basic operation of 4-bit up counter	[7M]
	b)	With neat diagram explain the operation of 3-bit universal shift register.	[7M]
		UNIT-V	
9	a)	A clocked sequential circuit is provided with a single input x and single output z, Whenever the input produces a string pulsed 111 or 000 and at the end of the sequence it produces an output z=1 and overlapping is also allowed. Obtain state diagram and state table.	[7M]
	b)	Differentiate the mealy machine from Moore machine.	[7M]
		OR	
10		Explain the following with an example for each. (i) State table (ii) State diagram (iii) State reduction.	[14M]