

II B. Tech II Semester Supplementary Examinations, December - 2022 COMPLEX VARIABLES AND STATISTICAL METHODS

Ti	me: 3	3 hours Max. Marks:	70		
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks			
		UNIT-I			
1	a)	Show that $f(z) = Re \ z = x$ is not differentiable	[7M]		
	b)	Evaluate $\int_{(1,1)}^{(2,4)} (x^2 + ixy) dz$ along the curve $x = t$, $y = t^2$	[7M]		
_		Or			
2	a)	Find the analytic function $f(z) = u + iv$ where $v(x, y) = e^{-x}(x\cos y + y\sin y)$	[7M]		
	b)	b) Evaluate $\int_c \frac{e^{2z}}{(z-1)(z-2)} dz$ where C: $ z = 3$ using Cauchy's integral formula.			
		UNIT-II			
3	a)	Obtain Laurent's expansion for $f(z) = \frac{1}{(z+2)(1+z)^2}$ in $ 1+z > l$	[7M]		
	b)	Evaluate $\oint_C \frac{dz}{\cosh z}$ where C: $ z = 2$ using Residue theorem	[7M]		
		Or			
4	a)	Obtain the Taylor's series expansion $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ in $ z < 2$	[7M]		
	b)	Evaluate $\int_{0}^{\infty} \frac{dx}{1+x^2}$ using Residue theorem	[7M]		
		UNIT-III			
5	a)	Let X denote the number of heads in a single toss of 4 fair coins. Determine the probability distribution and find $P(1 \le X \le 3)$	[7M]		
	b)	If the mean of the Poisson variant is 1.8 then find (i) $P(x > 1)$ (ii) $P(x = 5)$	[7M]		
		Or			
6	a)	$\left[0, if \ x < 1\right]$	[7M]		
		If F[X] = $\begin{cases} k(x-1)^4, & \text{if } 1 \le x \le 3 \\ 1 & \text{if } x > 3 \end{cases}$ then determine (i) f(x) (ii) find k			
	b)		[7M]		
	0)	If X is a normal variate, find the area A (i) to the left of $z = -1.78$ (ii) to the right of $z = 1.45$	[, 141]		
		UNIT-IV			

- 7 A population consists of six numbers {1, 2, 3, 4, 5, 6}. Consider all possible samples of [14M] size two with can be drawn without replacement from the population. Find
 - (i) The mean of the population
 - (ii) Standard deviation of the population
 - (iii) The mean of sampling distribution of means
 - (iv) The standard deviation of the sampling distributions of means

Or

|""|'|"|"||'|||

Code No: R2022011

SET - 1

- 8 a) Verify whether $\frac{x+2}{n+1}$ is an unbiased estimate of the binomial parameter 'p'. [7M]
 - b) A random sample of size 81 was taken whose variance is 20.25 and means is 32, [7M] construct 98% confidence interval.

UNIT-V

- 9 a) A sample of 100 electric bulbs produced by manufacturer 'A' showed a mean life [7M] time of 1190 hrs and S.D. of 90 hrs A sample of 75 bulbs produced by manufacturer 'B' showed a mean life time of 1230 hrs with S.D. of 120 hrs. Is there difference between the mean life times of the two brands at a significance level of 0.05.
 - b) A manufacturer claimed that at least 98% of the equipment he supplied is conformed [7M] to specifications. A sample of 500 pieces 30 were defective. Test the claim at 1% level.

Or

- 10 a) A random of 10 boys had the following I.Q's 70,120,110,101,88,83,95,98,107,100. [7M] Do the data support the assumption of population means I.Q of 100.Test at 1% level of significance.
 - b) Two independent samples of 8 items respectively had the following values. Test [7M] whether two samples has same variance at 5% level.

Sample I	11	11	13	11	12	9	12	14
Sample II	9	11	10	13	9	8	10	7

2 of 2