II B. Tech II Semester Regular/Supplementary Examinations, July - 2023 DIGITAL ELECTRONICS

(Electrical and Electronics Engineering)

Ti	me: :	3 hours Max. Ma	rks: 70
		Answer any FIVE Questions, each Question from each unit All Questions carry Equal Marks	
		UNIT-I	
1	a)	What are the characteristics of the 2's complement numbers? Explain with an example.	[7M]
	b)	Derive the truth table of AND, OR and NOT gates with suitable diagrams.	[7M]
		Or	
2	a) b)	Convert the following binary number to Gray code and vice versa 110110 Explain the duality principle with an example.	[7M] [7M]
		UNIT-II	
3	a)	Without reducing, convert the following expressions to NAND Logic i) A+BC+ABC ii) (XY+Z) (XY+P)	[7M]
	b)	Explain the function of Full Subtractor, supporting with truth table.	[7M]
4	a) b)	Or Simplify the function of $F=\sum m (0,2,3,4,5,6)$ using K-Map. Design a Half-adder logic diagram and explain it.	[7M] [7M]
		UNIT-III	
5	a)	Realize the logic expression $F=\sum m(0,1,3,5,8,11,12,14,15)$ using 8:1MUX. How many MUXs are required.	[7M]
	b)	Draw a PAL circuit before and after implementation of a function F=ABC+BC+CA. Explain.	[7M]
	,	Or	5 53. 63
6	a) b)	Implement the logic expression $F=\sum m$ (0,2,4,7) using a 4:1 MUX, and 8:1 MUX. Implement the following two Boolean functions with a PLA; $F_1(A,B,C)=\sum m$ (0,1,2,4), $F_2(A,B,C)=\sum m$ (0,5,6,7) UNIT-IV	[7M] [7M]
7	a)	What is the advantage and disadvantage of Ring counter compared to Ripple counter and explain the designing of a Ring counter?	[7M]
	b)	Explain the operation of a JK FF and List out the applications of \overline{PRESET} . Or	[7M]
8	a)	What are PRESET and CLEAR Inputs. Can a FF respond to its control and clock inputs while $\overline{PRE} = 1$ and $\overline{CLEAR} = 1$.	[7M]
	b)	How many states do a 4-bit i) Ripple counter ii) Ring Counter and iii) Jhonson counter have. Draw the states of any one of the counter.	[7M]

UNIT-V

9 a) Define and Draw the state table. What does each row, column and entry of the state [7M] table represent?

Obtain reduced state table and state diagram for the sequential machine whose state [7M] table is given below.

PS	N/S		O/P	
	X=0	X=1	X=0	X=1
a	c	b	1	1
b	d	С	0	0
c	(g)e	d	0	1
d	e	f	1	0
e	a	f	1	0
f	(g)e	f	1	0
g	a	f	1	0

Or

10 a) What is a transition table and output table? Explain with an example.

[7M]

b) Design a JK-FF and describe Excitation Table, State Table and State diagram in [7M] Moore model.

SET - 2 R20 Code No: R2022022

II B. Tech II Semester Regular/Supplementary Examinations, July - 2023 **DIGITAL ELECTRONICS**

(Electrical and Electronics Engineering)

Tim	e: 3 ł	nours Max. Marl	ks: 70
		Answer any FIVE Questions, each Question from each unit All Questions carry Equal Marks	
		UNIT-I	
1	a)	Detect and correct errors, if any, in the even parity hamming codeword 1010111 and write the correct word.	[7M]
	b)	Explain the sign magnitude representation of numbers with suitable example.	[7M]
		Or	
2	a) b)	Explain about EVEN and ODD parity checking principle with suitable example. With suitable diagrams, explain the working of EX-OR gate, and EX-NOR gates. Write the other names.	[7M] [7M]
		UNIT-II	
3	a)	Obtain the real minimal expression for $F=\sum m$ (1,2,4,6,7) and implement it using Universal Gates.	[7M]
	b)	Realize Look-a-Head Carry adder.	[7M]
		\mathbf{Or}	
4	a)	Reduce the expression $F=\sum m (1,5,6,12,13,14) + d(2,4)$ and implement the real minimal expression in Universal Logic.	[7M]
	b)	Design a Half-Subtractor and explain.	[7M]
		UNIT-III	
5	a)	Design a basic circuit of 1-bit magnitude comparator and explain.	[7M]
	b)	Tabulate the PLA programming table for the two Boolean functions listed below. i) $A(x,y,z) = \sum_{i} m(0,1,6,7)$ ii) $B(x,y,z) = \sum_{i} m(2,6)$ Or	[7M]
6	a)	Explain the basic working principle of Encoder with help of block diagram.	[7M]
	b)	Prepare a truth table of 1-to-4 line De-Mux and draw the circuit diagram.	[7M]
		UNIT-IV	
7	a)	How do you convert one type of FF into another.	[7M]
,	b)	Prepare excitation table for i) JK FF ii) D FF iii)SR FF	[7M]
		Or	
8	a)	Determine the number of FFs in each of the following counters. Mod3, Mod8, Mod14, Mod20, Mod32 and Mod150.	[7M]
	b)	Design and draw the timing diagram of Asynchronous 8-bit Upcounter using negative edge triggered FF.	[7M]
		negative edge triggered 11.	

1 of 2

UNIT-V

- 9 a) What is the Mealy model of the state diagram of a memory element. Give an [7M] example.
 - b) Draw an equivalent State diagram for the given state table in Moore Circuit [7M] modal and explain.

PS	NS,	O/P	
	Inp		
	X=0	X=1	
a	a	b	0
b	b	c	0
c	d	c	1
d	d	a	0

Or

10 a) Draw an equivalent State diagram for the given state table after in Moore Circuit [7M] modal and explain.

PS	N/S		O/P	
	X=0	X=1	X=0	X=1
a	b	d	0	1
b	e	f	0	1
c	b	d	0	1
d	e	b	0	1
e	e	f	0	1
f	f	c	0	0

b) Design a T-FF and describe Excitation Table, State Table and State diagram in [7M] Moore model.

Code No: R2022022 (R20)

II B. Tech II Semester Regular/Supplementary Examinations, July - 2023 DIGITAL ELECTRONICS

(Electrical and Electronics Engineering)

Ti	me: 3	3 hours Max. Mar	ks: 70
		Answer any FIVE Questions, each Question from each unit All Questions carry Equal Marks	
		UNIT-I	
1	a) b)	Express the following 8421 BCD numbers as decimals: i) 0110 0111 1001 1000. 1000 and ii) 011010010111.0101 Encode data bits 1101 into the 7-bit even parity Hamming code.	[7M]
	U)	Or	[/1/1]
2	a)	Find the 10's complement of the following decimal numbers. i) 4069 ii) 1056.074	[7M]
	b)	Explain Demorgan Theorems with suitable example.	[7M]
		UNIT-II	
}	a)	Using the QUINE-MC CLUSKEY method of tabular reduction minimize the given combinational single output function $F(w,x,y,z) = \sum_{i=1}^{n} (0,1,5,7,8,10,14,15)$.	[7M]
	b)	Derive the functional equation of SUM and Carry of a Full-Adder?	[7M]
1	a)	Or Using the tabular method, obtain the minimal expression for $F = \sum_{i=0}^{\infty} m(6,7,8,9) + d(10,11,12,13,14,15)$	[7M]
	b)	Derive the output functional equation of Half-Subtractor.	[7M]
		UNIT-III	
5		Design a BCD-to-Seven segment decoder with suitable minimization technique.	[14M]
		\mathbf{Or}	
5	a)	Design a 3 line-to-3 line decoder with suitable example?	[7M]
	b)	Draw the internal logic of a 32 X 8 ROM and explain.	[7M]
		UNIT-IV	
7	a)	Implement a 3-bit ripple counter using D FFs.	[7M]
	b)	Design a RS Latch with NAND only and NOR only gates and compare the truth table.	[7M]
		\mathbf{Or}	
3	a)	Define Race-around Condition? How can be eliminated this condition.	[7M]
	b)	Design a Jhonson Counter and explain the working with suitable waveforms.	[7M]

UNIT-V

9 a) Obtain reduced state table and draw state diagram for the sequential machine whose [7M] state table is given below.

PS	N/S		O/P	
	X=0	X=1	X=0	X=1
a	A	В	0	0
b	c	b	0	1
С	d	a	1	1
d	С	b	0	1

b) Design a D-FF and describe Excitation Table, State Table and State diagram in [7M] Mealy model.

Or

10 a) Draw an equivalent State diagram for the given state table in Mealy Circuit modal and explain. [7M]

PS	NS,O/P		
	$\overline{Input X}$		
	X=0	X=1	
a	a,0	b ,0	
b	b,1	c ,0	
c	d,0	c ,1	
d	d,0	a ,1	

b) Design a SR-FF and describe Excitation Table, State Table and State diagram in Melaly model. [7M]

II B. Tech II Semester Regular/Supplementary Examinations, July - 2023 DIGITAL ELECTRONICS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70 Answer any FIVE Questions, each Question from each unit All Questions carry **Equal** Marks UNIT-I a) Convert the Gray Code 1101 to Binary explain. 1 [7M] b) List out Boolean theorems and explain any two with suitable example. [7M] [7M] a) Realize the XOR function using i) AOI Logic ii) NAND logic and iii) NOR Logic b) Explain about standard SOP and POS forms with suitable example. [7M] **UNIT-II** Design an Ex-3 adder circuit with neat sketch and explain. 3 [14M] Or 4 Draw a BCD adder circuit and explain the function. [14M] a) Realize the following functions using a PROM of size 8X3. 5 [7M] I) $F1(x,y,z) = \sum m(0,4,7)$, $F2(x,y,z) = \sum m(1,3,6)$, $F3(x,y,z) = \sum m(1,2,4,6)$, b) Design 1:16 MUX with 1:4 Mux. How many 1:4Muxs are required. [7M] How many OR gates are there in a 32x8RoM and how many inputs does each OR [7M] gate of a 32X8 ROM have. b) Explain the Principle of priority encoder. [7M] **UNIT-IV** a) Explain how to convert JK- Truth table into JK Excitation table. Explain. [7M] b) Classify the triggering techniques. Design 2-bit Ripple down counter using negative [7M] -edge triggered FF. Or a) Design a synchronous Counter using 3 JK FFs and explain with waveforms. [7M] b) Find the characteristic equation for a i) JK FF ii)D FF [7M] **UNIT-V** a) Compare the State diagram and the State table. Draw the suitable diagrams. [7M] b) Draw the state diagram and the State Table for a Moore type sequence detector to [7M] detect the sequence 110.

Or

10 a) Draw an equivalent state diagram from the given State Table in Moore circuit [7M] modal.

PS	N/S		O/P
	X=0	X=1	
A	A	В	0
В	C	В	0
С	A	D	0
D	Е	В	0
Е	A	D	1

b) Design D-FF and describe Excitation Table, State Table and State diagram in Moore [7M] Model.