

II B. Tech II Semester Supplementary Examinations, December - 2023 FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE, CST, CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), CSE(CS), CSE(IOTCSIBCT),

CSE(IOT), AIDS, CS& AIML)

Time: 3 hours

Max. Marks: 70

[7M]

Answer any **FIVE** Questions each Question from each unit All Questions carry **Equal** Marks

UNIT-I

- 1 a) List and explain the components of finite state model with examples. [7M]
 - b) Obtain a DFA to accept strings of a's and b's such that, each block of 5 consecutive [7M] symbols has at least two a's.

OR

- 2 a) Compare and contrast Melay and Moore machines. Give an example for each. [7M]
 - b) Find whether the two DFAs given below are equivalent or not.

- UNIT-II
- 3 a) Construct a finite automaton for the regular expression $r = 01^* + 10$, also present its [7M] transition table.
 - b) Design a ε-NFA for the regular expression a*b+cb*+ac*b. Then convert it into a [7M] DFA.

OR

- 4 a) Discuss about the classification of languages and automata, also present the [7M] relationship between them.
 - b) With suitable examples, explain about the closure properties of regular sets. [7M]

UNIT-III

- 5 a) How to simplify a CFG? Explain with an example. [7M]
 - b) Show that $L = \{a^n b^n c^n | n \ge 1\}$ is not context free but context sensitive. [7M]

OR

1 of 2

|"'|'|"||"||||

Code No: R2022053

6

le N	lo: R2022053	(R20)
a)	Convert the below CFG to CNF:	
	$S \rightarrow a \mid aA \mid B$	
	$A \rightarrow aBB \mid \epsilon$	
	$B \rightarrow Aa \mid b$	
b)	Show that the language $L = \{a^n b^n \mid n\}$	≥1} is unambiguous.

SET - 1

[7M]

[7M]

UNIT-IV

7	a)	With an example, explain the structure and working of tow-stack PDA.	[7M]	
	b) Construct a deterministic PDA accepting $L = \{w \in \{a, b\} * \text{ the number of a's in } w $ [equals the number of b's in w} by final state. OR			
8	a)	With is an Instantaneous Description? Give the general model and graphical representation of a PDA.	[7M]	
	b)	Convert the following grammar to PDA that accepts the same language by empty stack $S \rightarrow 0AA$, $A \rightarrow 0S/1S/0$.	[7M]	
UNIT-V				
9	a)	Define the terms: (i) Turing Semi-Decidable (ii) Turing Undecidable (iii) Reducibility	[7M]	
	b)	Design a Turing machine to recognize the language $\{1^n 2^n 3^n \mid n \ge 1\}$.	[7M]	
OR				
10	a)	List and briefly explain different variants in Turing Machines.	[7M]	

b) What are the circumstances under P = NP and $P \neq NP$? [7M]