

II B. Tech II Semester Regular/Supplementary Examinations, July- 2023 FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE, CST, CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), CSE(CS), CSE(IOTCSIBCT),

CSE(IOT), AIML, CS, AIDS, CS& AIML)

Time: 3 hours

Answer any **FIVE** Questions each Question from each unit All Questions carry **Equal** Marks

UNIT-I

1 a) Construct DFA equivalent to the given NFA

	0	1
→A	{A,B}	А
В	С	С
C	D	Φ
Ð	D	D

b) Construct a DFA accepting the set of all strings ending with 'bb' over $\Sigma = \{a, b\}$. [7M]

Or

- 2 a) Draw the transition diagram of a FA which accepts all strings of 0's and 1's in [7M] which the number of 0's are odd and 1's are even.
 - b) Construct the moore machine to determine residue mod 3. [7M]

UNIT-II

- 3 a) Apply pumping lemma for the language $L=\{a^n/n \text{ is prime}\}$ and prove that it is not [7M] regular.
 - b) Write equivalent regular expression for the following DFA. [7M]

- 4 a) Give regular expression for representing the set L of strings in which every 0 is [7M] immediately followed by at least two 1's.
 - b) Construct the left linear grammar for the language (0+1)*00(0+1)* [7M]

|"|'||||"|"|||||

Max. Marks: 70

[7M]

Coc	le N	No: R2022053 R20	SET - 1
		UNIT-III	
5	a)	Write CFG for the language $L=\{0^n1^n n \ge 1\}$ i.e. the set of all strings of one 0's followed by an equal number of 1's.	or more [7M]
	b)	Eliminate NULL productions for the grammar S→ABClBaB A→aAlBaClaaa B→bbblalD C→CAlAC d→ε	[7M]
		Or	
6	a)	Prove that the following grammar is ambiguous on the string 'aab' $S \rightarrow aSlaSbSl\epsilon$	[7M]
	b)	Find the GNF equivalent to the following $S \rightarrow AA \mid 0$ $A \rightarrow SS \mid 1$	[7M]
		UNIT-IV	
7	a)	Design Push Down Automata for $L = \{a^{2n}b^n \mid n \ge 1\}$	[7M]
	b)	Convert the following Context Free Grammar to Push Down Automata $S \rightarrow aA \mid bB$ $A \rightarrow aB \mid a$ $B \rightarrow b$	[7M]
		Or	
8		Construct the equivalent grammar for the PDA $M=(\{q_0,q_1\}, \{0,1\}, \{R,Z_0\}, \delta, q_0, Z_0, \Phi) \text{ and } \delta \text{ is given by}$ $\delta(q_0,0,Z_0)=(q_0,RZ_0)$ $\delta(q_0,0,R)=(q_0,RR)$ $\delta(q_0,1,R)=(q_1,R)$ $\delta(q_1,1,R)=(q_1,R)$ $\delta(q_1,0,R)=(q_1,\epsilon)$ $\delta(q_1,\epsilon,Z0)=(q_1,\epsilon)$ UNIT-V	[14M]
9	a)	Design a Turing Machine to accept $L=\{WW^R W \text{ is in } (a+b)^*\}$	[7M]
	b)	Construct Turing Machine to compute the function log ₂ ⁿ	[7M]
		Or	
10	a)	Write short note on NP- hard and NP- complete problem.	[7M]
	b)	Check whether the following post correspondence problem has a solution or	not. [7M]
		IList AList B11011210010013100101	

II B. Tech II Semester Regular/Supplementary Examinations, July - 2023 FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE, CST, CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), CSE(CS), CSE(IOTCSIBCT), CSE(IOT), AIML, CS, AIDS, CS& AIML)

Time:	3	hours
-------	---	-------

Max. Marks: 70

[7M]

[7M]

Answer any **FIVE** Questions each Question from each unit All Questions carry **Equal** Marks

> -----UNIT-I

- 1 a) Design NFA accepting string with a's and b's such that string containing two [7M] consecutive a's or two consecutive b's.
 - b) Briefly discuss about Finite Automata with Epsilon- Transition.

Or

2 a) Check whether the following two FSM's are equivalent or not.

M1	0	1
→A	В	D
(B)	А	С
С	D	В
\bigcirc	С	А

M2	0	1
→P	R	R
Q	R	Р
R	Р	Q

- b) Draw the transition diagram of a FA which accepts all strings of 0's and 1's in [7M] which the number of 0's are even and 1's are odd. UNIT-II
- 3 a) Write a R.E. for the following DFA.

 $\begin{array}{c|c} a & b \\ \hline \rightarrow P & Q & P \\ \hline \mathbb{Q} & Q & P \end{array}$

b) Construct a Regular grammar G generating the regular set represented by a*b(a+b)* [7M]

Or

- 4 a) Construct NFA with ε transition for the following expression 0* + 11 [7M]
 - b) Construct the right linear grammar for the language (01)*0 [7M]

|"|||||"|""|||||

[7M]

Co	de N	No: R2022053 R20 SE	T - 2
		UNIT-III	
5	a)	Define Context free grammar and write context free grammar for the language $L=\{a^ib^jc^k \mid i+j=k, i\geq 0, j\geq 0\}$	[7M]
	b)	Eliminate Null, unit and useless production from the following grammar $S \rightarrow AaA CA BaB$ $A \rightarrow aaBa CDA aa DC$ $B \rightarrow bB bAB bb aS$ $C \rightarrow Ca bC D$ $D \rightarrow bD \epsilon$	[7M]
		Or	
6	a)	Define ambiguous Grammar. Prove that the following grammar is Ambiguous. S \rightarrow aSlaSbSl ϵ	[7M]
	b)	Convert the following CFG to CNF $S \rightarrow ASB \epsilon$ $A \rightarrow aAS a$ $B \rightarrow SbS A bb$	[7M]
_	,		
7	a)	Construct PDA for the language L= { $a^{m}b^{m}c^{n} \mid m,n \ge 1$ }	[7M]
	b)	Construct PDA equivalent to the following CFG $S \rightarrow 0A$ $A \rightarrow 0ABC 1B 0$ $B \rightarrow 1$ $C \rightarrow 2$	[7M]
		Or	
8		Construct the CFG for the PDA $M = (\{q_0,q_1\}, \{0,1\}, \{R,Z_0\}, \delta, q_0, Z_0, \Phi) \text{ and } \delta \text{ is given by}$ $\delta(q_0,1,Z_0) = (q_0,RZ_0)$ $\delta(q_0,0,R) = (q_1,R)$ $\delta(q_1,0,Z_0) = (q_0,Z_0)$ $\delta(q_0,\epsilon,Z_0) = (q_0,\epsilon)$ $\delta(q_1,1,R) = (q_1,\epsilon)$ UNIT-V	[14M]
9	a)	Design a TM to recognize the language L= $\{1^n 2^n 3^n \mid n \ge 1\}$	[7M]
	b)	Design TM which will recognize strings containing equal number of a's and b's	[7M]
	,	Or	
10	a)	Describe various ways of representing Turing machines with suitable examples.	[7M]
_ 0	h)	What is meant by Turing Reducibility? Explain	[7 M]
	5)	The is mount of Turing Roudolonity. Expluin.	[, 141]

["[']|||"[""]||]

II B. Tech II Semester Regular/Supplementary Examinations, July - 2023 FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE, CST, CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), CSE(CS), CSE(IOTCSIBCT),

Time: 3 hours

CSE(IOT), AIML, CS, AIDS, CS& AIML)

Max. Marks: 70

[7M]

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

UNIT-I

- a) Construct NFA with ε which accepts a language consisting the strings of any no. of 1 [7M] 0's followed by any no. of 1's followed by any no. of 2's.And also convert into NFA without ε
 - b) Draw the transition diagram of a FA which accepts all strings of 0's and 1's in [7M] which the number of 0's are even and 1's are even.

Or

- 2 a) Design a Mealy machine which can **'O'** output symbols **'**Ε' or [7M] encountered is even according to the total number of 1's odd. or The input symbols are 0 and 1.
 - b) Construct the minimum state equivalent DFA

	0	1
→A	В	А
В	А	С
С	D	В
D	D	А
Е	D	F
F	G	E
G	F	G
Н	G	D

UNIT-II

3 a)	a)	State pumping lemma for regular languages. Prove that the following language	[7M]
		L= { $a^n b^n n \ge 1$ } is not a regular.	

b) Prove the following identity $(a^*ab + ba)^*a^* = (a + ab + ba)^*$ [7M]

- Or 4 Construct the right linear grammar for the language (0+1)*00(0+1)*[7M] a)
 - Describe the following sets by regular expressions b) [7M] i) the set of all strings of 0's and 1's beginning with 00. ii) the set of all strings of 0's and 1's beginning with 1 and ending with 00.

		"	ľ			"	·'''		'	
--	--	---	---	--	--	---	------	--	---	--

Со	de N	No: R2022053	T-3
00		UNIT-III	
5	a)	Define Context free grammar and write context free grammar for the language $L=\{a^nb^mc^k \mid n+2m=k\}$	[7M]
	b)	Remove all useless Symbols and all ε – productions from the grammar S \rightarrow aAlaB A \rightarrow aaAlBl ε B \rightarrow blbB D \rightarrow B	[7M]
		Or	
6	a)	Consider the grammar S→aS/aSbS/ɛ Is the above grammar ambiguous? Show in particular that the string 'aab' has to : i. parse tree, ii. Leftmost derivation, iii. Rightmost derivation	[7M]
	b)	Convert the following grammar to Greibach Normal Form $S \rightarrow ABA \mid AB \mid BA \mid AA \mid B$ $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$	[7M]
		UNIT-IV	
7	a)	Design a PDA for the language L= {w w $\varepsilon(0+1)^*$ and no.of 0's < no.of 1's }	[7M]
	b)	Convert the following Context Free Grammar to Push Down Automata $S \rightarrow 0AA$ $A \rightarrow 0S \mid 1S \mid 0$	[7M]
		Or	
8		Construct the CFG for the PDA M =($\{q_0,q_1\}, \{0,1\}, \{R,Z_0\}, \delta, q_0, Z_0, \Phi$) and δ is given by	[14M]
		$\delta(q_0, 1, Z_0) = (q_0, RZ_0)$ $\delta(q_0, 1, R) = (q_0, RR)$ $\delta(q_0, 0, R) = (q_1, R)$ $\delta(q_1, 0, Z_0) = (q_0, Z_0)$ $\delta(q_0, \varepsilon, Z_0) = (q_0, \varepsilon)$ $\delta(q_1, 1, R) = (q_1, \varepsilon)$ UNIT-V	
9	a) b)	Design a TM to recognize the language L= { $0^n 1^n 0^n n \ge 1$ } Write a short note on linear bounded automata	[7M]
	0)		[/141]
10	``		
10	a)	what are undecidable problems? Explain with example.	[/[M]]
	b)	Check whether the following post correspondence problem has a solution or not.	[7M]
		I List A List B 1 111 11 2 1001 01 3 1110 1001	

II B. Tech II Semester Regular/Supplementary Examinations, July - 2023 FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE, CST, CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), CSE(CS), CSE(IOTCSIBCT), CSE(IOT), AIML, CS, AIDS, CS& AIML)

Time: 3 hours

Max. Marks: 70

[7M]

Answer any **FIVE** Questions each Question from each unit All Questions carry **Equal** Marks

UNIT-I

1 a) Convert the following NFA with ε to equivalent DFA

	0	1	3
→A	Φ	А	В
В	В	Φ	С
Ô	В	А	Φ

b) Draw the transition diagram of a FA which accepts all strings of 0's and 1's in [7M] which the number of 0's are odd and 1's are odd.

Or

2 a) Construct the minimum state automata for the following.

	0	1
→A	В	С
В	В	С
С	В	С
D	В	Е
Ē	В	С

b) Obtain a regular expression for the following FA

|"|'||||'|"|||||

[7M]

[7M]

UNIT-II

3	a)	Show that L={ $0^{i}1^{j} gcd(i,j) =$		[7M]			
	b)	Write equivalent regular expr	FA.	[7M]			
			δ	0	1		
			$\rightarrow q_1$	q_2	q ₃		
			q ₂	q ₃	q_1		
			(q ₃)	q_2	q_2		
				Or			
4	a) Find the regular expression for the Language L= $\{a^{2n}b^{2m} \mid n \ge 0, m \ge 0\}$						[7M]
	b) Simplify the following R.E. $r = \varepsilon + a^*(abb)^*(a^*(abb)^*)^*$						

UNIT-III

- a) Write CFG for the language $L=\{a^nb^n|n\geq 1\}$ i.e. the set of all strings of one or more 5 [7M] a's followed by an equal number of b's
 - b) Using CFL pumping lemma show that the following language is not context free [7M] $L = \{a^i b^j c^k | i < j < k\}$

Or

- What is an ambiguous grammar? Show that the following grammar is 6 a) [7M] ambiguous, where E is the start symbol. $E \rightarrow E + E | E - E | E * E | E / E | (E) | a$
 - Convert the following CFG to CNF [7M] b) $S \rightarrow ASB|\epsilon$ A→aASla B→SbS|A|bb

UNIT-IV

7 a)		Construct PDA for the language L= { $a^{2m}b^mc^n m,n \ge 1$ }	[7M]
	b)	For the following grammar construct a PDA	[7M]
		S→aABBlaAA	

A→aBBla B→bBB|A

 $C \rightarrow a$.

Or

a) Describe the steps in conversion of a CFG to a PDA with a suitable example. [7M] 8 b) Compare and contrast PDA with two stack PDA. [7M]

1""1"1"1"1"1

Code No: R2022053

R20)
------------	---

UNIT-V

ə a)) Design a TM to accept the language L= { wcw ^R w ε (a+b)* }	[7M]
b)	D) Define a Turing Machine. Give its classification with suitable examples.	[7M]
	Or	
10 a)) Write a short note on Church's hypothesis.	[7M]
b)) Briefly explain about post's correspondence problem.	[7M]

3 of 3