

II B. Tech II Semester Regular/Supplementary Examinations, July - 2023 LINEAR CONTROL SYSTEMS

(Common to ECE & EIE)

Time: 3 hours Max. Marks: 70 Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks **UNIT-I** 1. Determine the transfer function V(s)/F(s), for the system show in below figure: [7M] a) BL K M Ţν $\int f(t)$ Compare open loop and closed loop control systems based on different aspects. b) [7M] (OR)Determine the differential equation for the given mechanical system as shown 2. a) [7M] in figure and derive its transfer function and also draw the electrical equivalent analogous system. •. x(t)

- b) Explain the necessity and effect of feedback in control systems. [7M]

<u>UNIT-II</u>

[7M]

- 3. a) Derive the transfer function of Synchronous transmitter.
 - b) A unity feedback servo-driven instrument has an open loop transfer function: [7M] G(s)=10/s(s+2). Find the time domain specification for a unit step input.

(OR)

4. a) Compute the transfer function for control function shown below figure using [9M] Mason's gain formula:

|"|'||||"|"'||||

Code No: R2022044

6.

b) Using Block diagram reduction technique find the Transfer Function of the [5M] system.

UNIT-III

- 5. a) Explain how Routh Hurwitz criterion can be used to determine the absolute [7M] stability of a system.
 - b) With the help of Routh's stability criterion find the stability of the following [7M] system represented by the characteristic equation: $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$.

(OR)

- a) Enlist qualitative stability & conditional stability. [7M]
 - b) Calculate the angle of asymptotes and the centroid for the system having: [7M] $G(s)H(s) = \frac{K(S+3)}{S(S+2)(S+4)(S+5)}.$

UNIT-IV

Derive the expressions for resonant peak and resonant frequency and hence 7. [7M] a) establish the correlation between time response and frequency response. Sketch the Bode plot for the following Transfer Function : b) [7M] 20(0.1S+1)G(s) H(s) = $\overline{S^2(0.2S+1)(0.02S+1)}$ From the bode plot determine (i) Gain Margin (ii) Phase Margin (iii) Comment on the stability (OR)8. a) Sketch the polar plots of typical Type 0, 1 and 2 systems and explain the salient [7M] features of these plots. Explain about gain crossover frequency and phase cross over frequency. b) [7M] **UNIT-V** Explain the design of Lead-Lag controller. 9. a) [9M] Write the effect and limitation of phase-lag controller. b) [5M] (OR)Transfer function of a system is given by: 10. a) [7M] $\overline{U(s)} = \overline{s^3 + 6s^2 + 11s + 6}$. find controllability and observability. Check whether given system is Observable or controllable, [7M] b)

$$A = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix}, c = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

1''1'1111''1'''111'1

4

II B. Tech II Semester Regular/Supplementary Examinations, July - 2023 LINEAR CONTROL SYSTEMS

(Common to ECE & EIE)

Find the overall transfer function of the system whose signal flow graph is b) [7M] shown below.

R20

5. A system has : a)

$$G(s) H(s) = \frac{\kappa}{s(s+2)(s+4)(s+8)}$$

Where K is positive. Determine the range of K for stability.

With the help of Routh's stability criterion find the stability of the following b) [7M] system represented by the characteristic equation: $s^{6} + 2s^{5} + 8s^{4} + 12s^{3} + 20s^{2} + 16s + 16 = 0.$

(OR)

- Sketch the root locus for the characteristic equation is 6. [7M] a) S(S+1)(S+2)+K(S+1)-5=0.
 - Sketch the root locus of the system whose open loop transfer function is G(s)b) [7M] $H(s) = K (S+9) / S(S^2+4S+11).$

UNIT-IV

7. Draw the magnitude bode plot for the system having the following transfer a) [7M] $G(s) H(s) = \frac{2000 (S+1)}{S(S+10) (S+40)}$

function:

system is given by :

Given $\xi = 0.7$ and $\omega_n = 10$ rad/sec. Calculate resonant peak, resonant frequency [7M] b) and bandwidth.

(OR)

8. Sketch the polar plot for the open loop transfer function of a unity feedback a) [7M]

$$G(s) = \frac{1}{S(1+S)(1+2S)}$$

Determine Gain Margin & Phase Margin.

Draw the Nyquist plot for the system whose open loop transfer function is, b) [7M] G(s)H(s) = K / S(S+2) (S+10). Determine the range of K for which closed loop system is stable.

UNIT-V

Determine the state controllability and observability of the system described 9. [7M] a) by:

 $\dot{x} = \begin{bmatrix} -3 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 2 & 1 \end{bmatrix} u \quad y = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} x$

b) Enumerate the design steps involved in phase lag-lead compensation. [7M]

- 10. Define State, State variable, State model & State diagram. a) [7M]
 - Obtain the state model of the system whose transfer function is given by: b) [7M] $T(S) = \frac{S^2 + 3S + 3}{S^3 2S^2 + 3S + 1}$

1"1'1111"1"111'1

SET - 2

[7M]

II B. Tech II Semester Regular/Supplementary Examinations, July - 2023 LINEAR CONTROL SYSTEMS

(Common to ECE & EIE)

Max. Marks: 70

Answer any **FIVE** Questions each Question from each unit All Questions carry **Equal** Marks

<u>UNIT-I</u>

1. a) For the mechanical system shown in Fig, determine the transfer [7M] functions $X_1(s)/F(s) \& X_2(s)/F(s)$

b) Define control system. Write the different types with numerical control [7M] systems with example.

(OR)

2. a) Obtain the mathematical model of the mechanical system shown in below [7M] Figure:

b) Derive the transfer function of Translational mechanical system.

<u>UNIT-II</u>

3. a) For the system represented in the given figure, determine transfer function [7M] C(S)/R(S).

b) Explain DC Servomotor and obtain its transfer function.

[7M]

[7M]

(OR)

1"1'1111"1"111'1

Code No: R2022044

- 4. a) Find all the time domain specifications for a unity feedback control system [7M] whose open loop transfer function is given by G(S) = 25/S(S+5).
 - b) Find the overall transfer function of the system whose signal flow graph is [7M] shown below.

- 5. a) With the help of Routh's stability criterion find the stability of the following [9M] system represented by the characteristic equation: $s^{5} + s^{4} + 2s^{3} + 2s^{2} + 3s + 5 = 0$
 - b) List the limitations of Routh's stability.

[5M]

(OR)

6. a) Using RH to determine the location of roots on the S-Plane and hence the [7M] stability for the system represented by the characteristic equation

 $S^6 + S^5 + 3S^4 + 3S^3 + 3S^2 + 2S + 1 = 0$

b) Sketch the root locus of the system whose open loop transfer function is G(s) [7M] $H(s) = K / S (S^2+4S+13)$.

UNIT-IV

7. a) Sketch the Bode plot for the system having the following transfer [7M] $G(s) = \frac{15 (S+5)}{S(S^2 + 16S + 100)}$ function:

b) Sketch the polar plot of the transfer function: [7M]

$$G(s) = \frac{10}{s(s+1)}$$

(OR)

- 8. a) Describe the Nyquist stability criterion and its significance. [7M]
 b) Build the Nyquist plot for a given transfer function: [7M]
 - b) Build the Nyquist plot for a given transfer function: $G(s) = \frac{3}{3}$

$$s(1+5s)(1+2s)$$

UNIT-V

- 9. a) Derive the expression for the transfer function of a lead-lag compensator. [7M]
 b) Define state transition matrix and explain its properties with examples. [7M]
 (OR)
 10. The state equations of a Linear system are as follows. [14M]
 [-2 0 1] [1]
 - $\bar{x} = \begin{bmatrix} -2 & 0 & 1 \\ 1 & -3 & 0 \\ 1 & 1 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u \quad ; y = \begin{bmatrix} 2 & 1 & -1 \end{bmatrix} x$

Determine the transfer function y(s)/u(s).

1"|'||||"|"'|||||

Code No: R2022044

(**SET - 4**)

II B. Tech II Semester Regular/Supplementary Examinations, July - 2023 LINEAR CONTROL SYSTEMS

(Common to ECE & EIE)

b) Find the overall transfer function of the system whose signal flow graph is [7M] shown below.

 H_1

Code	e No:	R2022044 R20	ET - 4
4.	a)	Describe the AC servo motor and list out its merits and demerits.	[7M]
	b)	List out the time domain specifications and derive the expressions for Rise time, Peak time and Peak overshoot.	[7M]
5.	a)	Determine the range of K for stability of unity feedback system whose open loop transfer function is $G(s) H(s) = K / S(S + 1) (S+2)$. Using Routh's stability criterion.	[7M]
	b)	With the help of Routh's stability criterion find the stability of the following system represented by the characteristic equation: 9s 5 -20s 4 + 10 s 3 - s 2 - 9s - 10 = 0	[7M]
(`	(OR)	
6.	a) b)	Explain the procedure for constructing root locus. Sketch the root locus of the system whose open loop transfer function is $G(a)$	[/] N]
	D)	Sketch the root focus of the system whose open foop transfer function is $G(s)$ $H(s) = \mathbf{K} / \mathbf{S}(\mathbf{S} + 2)(\mathbf{S} + 4)$	[/1 v1]
7.	a)	Sketch the Bode plot for the following transfer function $G(s)H(s) = \frac{Ke^{-0.1s}}{S(s+1)(1+0.1s)}$	[7M]
	h)	Sketch the polar plot for :	[7M]
	0)	$G(s) = \frac{1}{s(1+sT)}$	[, 1, 1, 1]
		(OR)	
8.	a)	Explain frequency domain specifications.	[7M]
	b)	A system is given by $G(s) H(s) = (4S+1) / S^2(S+1) (2S+1)$ Sketch the Nyquist plot and determine the stability of the system.	[7M]
		<u>UNIT-V</u>	
9.	a)	Explain PID Controllers with necessary expressions.	[7M]
	b)	Explain the controllability and observability with an example. (OR)	[7M]
10.	The state equation of a system is given by:		[14M]
	x x	$ \begin{bmatrix} -3 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), t > 0 $	
	i) Is	the system controllable	
	ii) (Compute the state transition matrix	
	111)	Compute $x_1(t)$ under zero initial condition and a unit step input.	