

III B. Tech I Semester Supplementary Examinations, JULY -2023 **ANALOG ICs AND APPLICATIONS**

(Electronics and Communication Engineering)			
Tir	Time: 3 hours Max. Marks:		
Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks			
1.	a)	<u>UNIT-I</u> List any six characteristics of an ideal op-amp and give the practical op-amp	[7M]
	b)	equivalent circuit. Explain the principle of basic linear voltage regulator using op-amp. (OR)	[7M]
2.	a)	Explain the following terms in an op-amp: i)Bias current ii)Thermal drift	[7M]
	b)	Explain the operation of LM79XX series fixed voltage regulator with a neat diagram.	[7M]
		<u>UNIT-II</u>	
3.	a)	Derive the op-amp output voltage equation for the following: (i) Integrator, (ii) Differentiator.	[7M]
	b)	Draw the circuit of a high speed sample-and-hold circuit and explain its operation, sketching the input signal, control and output voltage waveforms.	[7M]
4.	a)	Draw the circuit diagram of an antilogarithmic amplifier using op-amp and explain its operation	[7M]
	b)	Define the terms Upper and Lower Tripping Points of a Schmitt trigger. What is the significance of the two parameters?	[7M]
		UNIT_III	
5.	a)	Design a second order low-pass Butterworth filter with a cut-off frequency of 12 kHz and unity gain at low frequency. Also determine the voltage transfer function	[7M]
	b)	Design a narrowband band pass filter using an op-amp. The resonant frequency is 100 Hz and Q = 2. Assume C = 0.1μ F. draw the equivalent diagram.	[7M]
6.	a)	Consider the op-amp high pass filter with 20 dB/decade roll-off shown below. Calculate the value of R if C = 0.001 μ F and f _c = 15 kHz.	[7M]
		$R_{i} = R$	
	b)	Design a narrowband band pass filter with a resonant frequency of 300 Hz and a bandwidth of 30 Hz. Draw the equivalent circuit.	[7M]
		UNII-IV	

- 7. a) Draw the 555 monostable multivibrator circuit and explain its working with the [7M] help of waveforms.
 - b) Find the lock and capture frequencies for PLL 565, with free-running frequency [7M] of 120 kHz, demodulation capacitor of 1 μ F and supply voltage of ±5 V.

(OR)

1""1"1"1"1"1

R20

SET - 1

- 8. a) Draw the 555 Timer circuit in a stable mode and explain the working with the [7M] help of waveforms.
 - b) What is the principle of PLL? Draw the block schematic and explain the same. [7M] UNIT-V
- 9. a) Explain R-2R ladder-network type digital to analog converter with the help of a [7M] circuit.
 - b) An 8-bit analog to digital converter can accept voltages from +0 V to +12 V. [7M]
 What is the minimum value of input voltage to cause digital output change of 1
 LSB? If the applied input voltage is 4.8 V, what is the digital output?

(OR)

- 10. a) What is the principle of successive-approximation type analog to digital [7M] converter? Explain with a neat diagram.
 - b) A 4-bit digital to analog converter produces output voltage of 0.1V for a digital [7M] input of 0001 V. Find the value of V_o for maximum input.