Code No: R2031052

SET - 1

[7M]

III B. Tech I Semester Supplementary Examinations, July – 2023 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE, IT)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit

All Questions Carry Equal Marks

		UNIT-I	
1.	a)	Differentiate performance measurement and performance estimation of algorithms.	[7M]
	b)	Write the pseudo code for expressing algorithms. (OR)	[7M]
2.	a)	What are the Asymptotic notations? And give its properties.	[7M]
	b)	What are the features of an efficient algorithm? Explain with an example.	[7M]
3.	a)	<u>UNIT-II</u> Write about quick sort method with example.	[7M]
	b)	Explain in detail merge sort. Illustrate the algorithm with a numeric example. Provide complete analysis of the same. (OR)	[7M]
4.	a)	Derive the Best, Worst and Average time complexities of Merge sorting technique.	[7M]
	b)	Write about single source shortest path problem.	[7M]
		UNIT-III	
5.		Apply dynamic programming to obtain optimal binary search tree for the identifier set(a1, a2, a3, a4)=(cin, for, int, while) with (p1, p2, p3, p4)=(1, 4, 2, 1),(q0, q1, q2, q3, q4)=(4, 2, 4, 1, 1) and also write algorithm for its construction.	[14M]
		(OR)	
6.	a)	How to insert more number of jobs in feasible solution set J={} to maximize the profit using greedy method? Explain algorithm.	[7M]
	b)	Write about 0/1 knapsack problem.	[7M]
		<u>UNIT-IV</u>	
7.	a)	Explain the algorithm for general iterative backtracking method and discuss various factors that define the efficiency of backtracking.	[7M]

(OR)

Explain how backtracking is used for solving n- queens problem. Show the

state space tree.

8. a) Construct an optimal travelling sales person tour using Dynamic Programming [7M] for the given data:

 $\begin{pmatrix}
0 & 10 & 9 & 3 \\
5 & 0 & 6 & 2 \\
9 & 6 & 0 & 7 \\
7 & 3 & 5 & 0
\end{pmatrix}$

b) Write the backtracking algorithm for the sum of subsets problem using the state [7M] space tree corresponding to m=35,w=(20,18,15,12,10,7,5).

UNIT-V

9. Write short note on the following:

[14M]

- a) Vertex cover
- b) Independent set
- c) Set cover
- d) Steiner tree

(OR)

10. a) Explain about NP-complete problem with example.

[7M]

b) Explain FIFO Branch and Bound solution.

[7M]

[,14