

III B. Tech I Semester Supplementary Examinations, May/June -2024 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE, IT)

Time: 3 hours Max. Marks:			s: 70
		Answer any FIVE Questions ONE Question from Each unit	
		All Questions Carry Equal Marks	
		UNIT-I	
1.	a) b)	What is the importance of random variable in probabilistic analysis? Explain. Write about asymptotic notations.	[7M] [7M]
	- /	(OR)	r. 1
2.	a)	Explain the role of instance characteristics in finding the time and space complexities with an example.	[7M]
	b)	What is pseudo-code? Explain with an example.	[7M]
		UNIT-II	
3.	a)	State the Greedy Knapsack? Find an optimal solution to the Knapsack instance $n=3, m=20, (P1, P2, P3) = (25, 24, 15) and (W1, W2, W3) = (18, 15, 10).$	[7M]
	b)	Show that the average case time complexity of quick sort algorithm is O (n loge n).	[7M]
		(OR)	
4.	a)	Find optimal solution to the knapsack problem instance $n=6$, $m=15,(p1p6) = (10,5,15,7,6,18), (w1w6) = (2,3,5,7,1,4).$	[7M]
	b)	Analyze the best, average and worst case complexity of quick sort.	[7M]
		UNIT-III	
5.	a)	Explain an algorithm to compute the all pairs shortest path using dynamic programming and prove that it is optimal.	[7M]
	b)	Write about 0/1 knapsack problem.	[7M]
		(OR)	
6.	a)	Describe the Dynamic 0/1 Knapsack problem. Find an optimal solution for the	[7M]
)	dynamic programming 0/1 knapsack instance for n=3, m=6, profits are(p1, p2, p3) = $(1, 2, 5)$, weights are (w1, w2, w3)= $(2, 3, 4)$.	[,]
	b)	Explain the Travelling sales man problem.	[7M]
	0)	UNIT-IV	[,]
7.	a)	Define the backtracking algorithm for the sum of subsets problem using the states pace tree corresponding to m= 35 , w=(20,18,15,12,10,7,5).	[7M]
	b)	Illustrate control abstraction for backtracking.	[7M]
		(OR)	
8.	a)	List out the detail about Hamiltonian cycles. Give example to it.	[7M]
	b)	Develop an algorithm to determine the Hamiltonian Cycle in a given graph using backtracking.	[7M]
		<u>UNIT-V</u>	
9.	a)	Explain the importance of bounding function in generating the solutions. And also classify the different types of bounding functions with an example each.	[7M]
	b)	Apply branch and bound algorithm to solve the travelling salesman problem with an example.	[7M]
		(OR)	
10.		Summarize with short note on the following (i) Tractable and intractable problems (ii)P Problems (iii)Non deterministic algorithm (iv) NP problem (v)NP complete problems.	[14M]

|"|"|||"|"|||||