Code No: R2031043

III B. Tech I Semester Supplementary Examinations, May/June -2024 DIGITAL COMMUNICATIONS

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

<u>UNIT-I</u>

1.	a) b)	Derive the expression for signal to quantization noise ratio in a DM system. A sinusoidal signal of 2 kHz frequency is applied to a delta modulator. The sampling rate and step-size Δ of the delta modulator are 20,000 samples per second and 0.1 V, respectively. To prevent slope overload, what is the maximum amplitude of the sinusoidal signal (in Volts).	[7M] [7M]
2.	a)	Explain the desirable properties of line codes. What is essential bandwidth?	[7M]
	b)	In a PCM system, the signal $m(t) = {sin (100\pi t) + cos(100\pi t)} V$ is sampled at the Nyquist rate. The samples are processed by a uniform quan \Box zer with step size 0.75 V. Find the minimum data rate of the PCM system in bits per second.	[7M]
		<u>UNIT-II</u>	
3.	a)	Outline the generation and detection of a coherent ASK signal and derive the power spectral density of binary ASK signal and plot it	[7M]
	b)	Compare binary and M-ary signalling schemes.	[7M]
	- /	(OR)	Γ. J
4.	a)	Explain QPSK with waveforms, constellation diagram and mathematical representation.	[7M]
	b)	Compare BASK, BFSK, BPSK and QPSK.	[7M]
UNIT-III			
5.	a)	What are the properties of Matched filter?	[7M]
	b)	Find out the Probability of error BASK.	[7M]
		(OR)	
6.	a)	Obtain the optimum filter transfer function.	[7M]
	b)	A BPSK system makes errors at the average rate of 100 errors per day. Data rate is 1 Kbps. The single-sided noise power spectral density is 10 W/Hz. Assume the system to be wide sense stationary, what is the average bit error probability?	[7M]
		<u>UNIT-IV</u>	
7.	a)	State and prove properties of mutual information.	[7M]
	b)	A Memory less source emits six messages with probabilities {0.4, 0.2, 0.2, 0.1,	[7M]
		0.1}. Find the Shannon - Fano code and determine its efficiency	
		(OR)	

8. a) Consider that two sources emit messages xl, x2, x3 and y1, y2, y3 with the joint [7M] probabilities p (X, Y) as shown in the matrix form:

(i) Calculate the entropies of X and Y. (ii) Calculate the joint and conditional entropies, H (X,Y), H (X/Y), H(Y/X) between X and Y (iii) Calculate the average mutual information I(X;Y).

b) Discuss the trade off between bandwidth and SNR. [7M]

Consider a (6,3) linear block code whose generator matrix is given by 9. [7M] a) 0 0 1 0 1 [1 0 lo (i) Find the parity check matrix. (ii) Find the minimum distance of the code. (iii) Draw the encoder and syndrome computation circuit. Compare between code tree and trellis diagram. [7M] b)

t

(OR)

10. a)Explain Viterbi algorithm to decode a convolutionally coded message.[7M]b)Discuss the matrix discription of Linear Block codes.[7M]