Code No: R203104Q

III B. Tech I Semester Supplementary Examinations, July -2023 DIGITAL LOGIC DESIGN

(Common to CSE, IT)

Time: 3 hours Max. Mar			
		Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****	
		<u>UNIT-I</u>	
1.	a)	i) Convert (8B7.A4) ₁₆ toits binary equivalent.	[7M]
	b)	ii) Convert $(714.36)_8$ to its hexadecimal equivalent.	[7]1]
	0)	(OR)	[/101]
2.	a)	i) What are the universal gates? Why they are called as universal gates?	[7M]
		Discuss with the figures.	
		ii) Draw the Logic diagram and explain the truth table of EX-OR and EX-NOR	
	1.)	gates.	[7]] (]
	D)	i) State and prove De-morgan theorems.	[/]M]
		AB+ABC+AB(D+E).	
		<u>UNIT-II</u>	
3.	a)	Simplify the following function using K-Map:	[7M]
		$F(A,B,C,D) = \sum (0,2,3,8,10,11,12,14)$	
	b)	Design a full adder by using two half adders.	[7M]
4	`	(OR)	
4.	a)	Simplify the following function using K-Map: $E(A, B, C, D, E) = \Pi(0, 1, 6, 7, 8, 0, 21, 22, 23, 20, 21)$	[/M]
	h)	$\Gamma(A, B, C, D, E) = \Pi(0, 1, 0, 7, 0, 9, 21, 22, 23, 29, 51)$ Implement Carry look-a-head adder circuit and explain its operation briefly	[7M]
	0)		[,]
5.	a)	Implement the following Boolean functions using PROM:	[7M]
0.)	$F_1(A_2,A_1,A_0) = \sum (0,1,2), F_2(A_2,A_1,A_0) = \sum (3,4,5), F_3(A_2,A_1,A_0) = \sum (2,4,6)$	[,]
	b)	Draw the pin diagram and obtain the truth table of IC 7485?	[7M]
		(OR)	
6.	a)	Design a 4 to 2 priority encoder.	[7M]
	b)	Implement the following Boolean function using 4:1 Mux:	[7M]
		$F(A,B,C,D)=\sum(0,2,3,6,11,13,15)$	
7	`	<u>UNIT-IV</u>	[77]) (1
1.	a)	what is a Flip flop? Explain the SR flip flop with the help of logic diagram,	[/M]
	b)	Design a 3 bit Synchronous Counter	[7M]
	0)	(OR)	[/101]
8.	a)	Convert SR Flip flop into JK flip flop.	[7M]
	b)	What is a register? Explain the operation of Parallel In Serial Out shift register	[7M]
	- /	(PISO).	[· -]

R20

SET - 1

UNIT-V

9.	a) b)	Explain the differences between Mealy and Moore Machine. What is a Finite State Machine? Explain the capabilities and limitations of	[7M] [7M]
	0)	Finite State Machine.	[,]
		(OR)	
10.	a)	Explain the designing steps to convert Mealy machine to Moore machine.	[7M]
	b)	Design a finite state machine which can detect the sequence 0010.	[7M]

|"|||||"|"|||||