Code No: **R2041050**

IV B.Tech I Semester Regular Examinations, January - 2024 **IMAGE PROCESSING** (OE-III: CE, EEE, ME, ECE, AME, MM, AGE, CSE-CS, CSE-IOTCSIBCT, CSE- IOT, FE, PHARM & CS)

Time: 3 hours

Answer any FIVE Questions **ONE** Question from Each unit All Questions Carry Equal Marks *****

UNIT - I

- 1 a) What are the fundamental steps in an image processing system, and how do they differ from the steps in traditional photography. [7] b) List and describe various types of connectivity between pixels with an
 - example of each. [7]

(OR)

- 2 a) Explain the concepts of image sampling and quantization. Why are these steps essential in the digitization of continuous analog images, and how do they [7] affect image quality.
 - b) Discuss the hardware components of an image processing system, such as cameras and sensors. How do these components impact the quality of acquired images?

UNIT - II

3	a)	How does image enhancement differ from image restoration? Provide	
		examples of image enhancement techniques and their applications.	[7]
	b)	What are the practical applications of image averaging in noise reduction and	
		improving image quality?	[7]
		(OR)	
4		Define histogram equalization and how does it enhance the contrast of an	
		image? Explain the algorithm and its mathematical principles.	[14]

UNIT - III

5 Explain the concept of redundancy in image data. How do coding redundancies, inter-pixel redundancies and psychovisual redundancies affect image compression techniques? [14]

(OR)

1 of 2

Set No. 1

R20

[7]

Max. Marks: 70

Set No. 1

6	a)	Describe the principles of run-length coding and its application in image	
		compression. How does it exploit redundancies in binary or continuous-tone	
		images?	[7]
	b)	Define lossless and lossy compression. What are the key differences between	
		these two compression approaches?	[7]

R20

UNIT - IV

7	a)	Explain the concept of expanding functions in wavelet-based image	
		compression. How does the expansion of functions relate to signal	
		representation?	[7]
	b)	Define scaling functions and their importance in wavelet-based image	
		compression.	[7]
		(OR)	
8	a)	Provide a detailed mathematical explanation of the MRA refinement equation	
		and its role in the wavelet transform.	[7]
	b)	Define wavelet series expansion and its use in image compression. How does	
		it differ from other signal representation techniques like Fourier series?	[7]
		UNIT - V	

9	a)	What is image segmentation and explain how is image segmentation used to	
		partition an image into meaningful regions.	[7]
	b)	Define feature extraction in the context of image analysis. What are the key	
		characteristics or attributes extracted from images?	[7]
		(OR)	
10		Discuss the concept of digital image watermarking. Why is digital image	

watermarking needed and what are its applications in various fields. [14]

IV B.Tech I Semester Regular Examinations, January – 2024 IMAGE PROCESSING (Open Elective-III: CE, EEE, ME, ECE, AME, MM, AGE, CSE-CS, CSE-IOT

CSIBCT, CSE- IOT, FE, PHARM, CS)

Time: 3 hours

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****

UNIT - I

- 1 a) Discuss the importance of image pre-processing in image processing. What are the common pre-processing techniques and their applications? [7]
 - b) Describe the role of memory and storage devices in image processing. What are the considerations for choosing suitable storage solutions for images? [7]

(OR)

- 2 a) Explain the concept of attention in visual perception. How can image processing algorithms be designed to capture and utilize attention cues for [7] object recognition and tracking?
 - b) How do input and output devices contribute to the image processing system?
 Provide examples of input and output devices used in image processing. [7]

UNIT - II

3 What is a basic grey level transformation in image processing, and how does it a) alter the appearance of an image? Provide examples of commonly used transformation functions. [7] b) Discuss the advantages and limitations of histogram equalization. When is it most effective and when might it produce undesirable results. [7] (OR) a) Describe the differences between arithmetic mean and geometric mean image 4 averaging methods. [7] What are smoothing filters in image processing and how do they reduce noise b) and enhance the overall image quality? [7]

R20

Set No. 2

Max. Marks: 70

R20

Set No. 2

UNIT - III

5	a)	Discuss the role of inter-pixel redundancies in image compression.	[7]
	b)	Provide examples of lossless compression techniques commonly used in image compression such as run-length coding.	[7]
		(OR)	
6	a)	Explain the concept of differential encoding and its role in encoding the difference between adjacent pixel values.	[7]
	b)	Provide an overview of the JPEG compression standard. What are its key	
		features?	[7]
		UNIT - IV	
7	a)	Describe the mathematical properties of expansion functions, and provide examples of commonly used expansion functions in wavelet analysis.	[7]
	b)	Explain how scaling functions are used to generate a multi resolution representation of an image.	[7]
		(OR)	Γ.]
8	a)	Discuss the advantages of wavelet series expansion in representing images with sharp transitions and localized features.	[7]
	b)	Explain the discrete wavelet transform (DWT) and its role in image compression.	[7]
		UNIT - V	
9	a)	Discuss the concept of discontinuities in image segmentation. How can abrupt	
		changes in pixel intensity be used to detect edges and boundaries in an image.	[7]

b) Explain the role of texture features in image analysis. How can texture be quantified and used as a feature for classification and object recognition. [7]

(OR)

- 10 a) Describe the concept of feature-based object recognition. How are key features of objects used to identify and match them in images? [7]
 - b) Why is there a need for digital image watermarking? Explain the primary reasons and challenges that make watermarking essential in the digital age for image protection and verification.

2 of 2

R20

Set No. 3

IV B.Tech I Semester Regular Examinations, January - 2024 IMAGE PROCESSING

(Open Elective-III: CE, EEE, ME, ECE, AME, MM, AGE, CSE-CS, CSE-IOT CSIBCT, CSE- IOT, FE, PHARM, CS)

Time: 3 hours

Max. Marks: 70

Answer any FIVE Questions **ONE** Question from Each unit All Questions Carry Equal Marks ****

UNIT - I

1	a)	Explain the concept of image segmentation. How does it play a crucial role in	
		image processing, and what are some common segmentation algorithms.	[7]

Discuss the importance of user interfaces in image processing systems. How b) can user interfaces be designed to facilitate efficient image processing tasks. [7]

(OR)

- a) Discuss the concept of color perception and its role in image processing. How 2 are color spaces like RGB and CMYK used to represent and manipulate color in images.
 - b) Describe the different types of image sensors and their working principles, including CCD and CMOS sensors. What are the advantages and disadvantages of each type? [7]

UNIT - II

- 3 Explain the concept of contrast stretching. How does it affect the dynamic a) range of pixel values in an image? [7] Describe the Laplacian filter and its applications in edge enhancement. What b)
 - is the role of the Laplacian of Gaussian (LoG) filter in image sharpening? [7] (OR)
- Explain the concept of adaptive histogram equalization and its application in 4 medical image processing. How does it differ from standard histogram [14] equalization?

UNIT - III

5	a)	Explain	psychovisual	redundancies	and	their	significance	in	image	
		compress	sion.							[7]
	b)	Discuss the trade-offs involved in lossy compression and how compression								
	ratios impact the quality of the decompressed image.									[7]

(OR)

1"1'1111"1"111'1

[7]

|"|'||||"|"||||

Code No: **R2041050**

6 Discuss the basics of the Discrete Cosine Transform (DCT) and its use in image compression. How does the DCT convert image data from the spatial [14] domain to the frequency domain?

UNIT - IV

7	a)	Define MRA in the context of wavelet-based image compression. How does	
		MRA allow for the analysis of images at different scales?	[7]
	b)	Discuss the characteristics and properties of scaling functions such as	
		orthogonality and compact support.	[7]
		(OR)	
8	a)	Describe the process of down-sampling in the DWT and its impact on image	
		resolution and data reduction.	[7]
	b)	Compare and contrast the discrete wavelet transform (DWT) and the	
		continuous wavelet transform (CWT) in the context of image compression.	[7]
		UNIT - V	
9	a)	Explain the process of edge linking and boundary detection in image	
		segmentation.	[7]
	b)	Explain the concept of shape features in feature extraction. How are	
		geometric properties used to distinguish objects in images?	[7]
		(OR)	
10	a)	Discuss the techniques for template matching in object recognition. How does	
		template matching work and what are its limitations.	[7]
	b)	What are the potential risks and threats to digital images that necessitate the	
		use of watermarking techniques? How can watermarking address these risks.	[7]

2 of 2

Set No. 3

IV B.Tech I Semester Regular Examinations, January – 2024 IMAGE PROCESSING (Open Elective-III: CE, EEE, ME, ECE, AME, MM, AGE, CSE-CS, CSE-IOT

CSIBCT, CSE- IOT, FE, PHARM, CS)

Time: 3 hours

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****

UNIT - I

1	a)	Describe the process of image restoration. What are the challenges in restoring	
		images, and how can they be addressed.	[7]
	b)	Explain the process of image digitization in image sensing and acquisition.	
		What factors affect the choice of resolution and bit depth during digitization.	[7]
		(OR)	
2	a)	How does the human visual system perceive and process motion in images and	
		videos? Describe the applications of motion perception in image processing.	[7]
	b)	Compare the various image acquisition techniques such as radiographic	
		imaging and satellite imaging.	[7]
		UNIT - II	
3	a)	Discuss the significance of image negation as a grey level transformation.	[7]
	b)	What are the challenges and limitations associated with sharpening filters?	
		How can over-sharpening be avoided?	[7]

(OR)

4 Discuss the challenges and techniques associated with image registration before performing image subtraction. [14]

UNIT - III

5	a)	Define fidelity in the context of image compression. How is it related to the	
		quality of the decompressed image?	[7]
	b)	Describe the JPEG 2000 compression standard and its improvements over the	
		original JPEG standard. What advantages does it offer in terms of image	
		quality and compression efficiency?	[7]
		(OR)	

1 of 2

Set No. 4

Max. Marks: 70

R20