|"|"|||"|""|||'|

Code No: **R204104A**

IV B.Tech I Semester Regular Examinations, January – 2024 **OPTICAL COMMUNICATION**

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Answer any FIVE Questions **ONE** Question from Each unit All Questions Carry Equal Marks *****

UNIT - I Erralain de

1	a)	Define Graded Index fiber (GIF). Explain the ray transmission mechanism in GIF.	[7]
	b)	A multimode step index fiber with a core diameter of $100\mu m$ and relative index difference of 1.5% is operating at a wave length of 0.85 μm . If the core	r. 1
		refractive index is 1.50, estimate (i) The normalized frequency for the fiber,	
		(ii) The number of guided modes.	[7]
		(OR)	
2	a)	Draw the structure of an Optical fiber. Explain mode coupling effects due to bends in fiber.	[7]
	b)	A silica OF has a core refractive index of 1.45 and a cladding refractive index of 1.42. Determine (i) Critical angle at the core-cladding interface	
		(ii) Numerical Aperture of the fiber.	[7]
		UNIT - II	
3	a)	Discuss about the properties and applications of Active glass fibers.	[7]
	b)	Define the term dispersion in fibers. Discuss about Material dispersion. (OR)	[7]
4	a)	Elucidate micro and macro bending losses.	[7]
	b)	Explain about Information capacity determination.	[7]
		UNIT - III	
5	a)	Discuss about single mode fiber joints.	[7]
	b)	List out intrinsic coupling losses and explain any 2-losses with suitable diagrams.	[7]
		(OR)	Γ.]
6	a) b)	Explain about self alignment types existing during fusion splicing.	[7]
	U)	design? Explain.	[7]

1 of 2

R20

Set No. 1

UNIT – IV and explain their radiation

7	a)	Design a surface emitting LED and explain their radiation property.	[7]
	b)	How the Temperature effects APD avalanche gain? Explain.	[7]
		(OR)	
8	a)	How can be estimated resonant frequencies of a Laser diode? Explain.	[7]
	b)	Classify detector response time and explain any one of the method.	[7]
		UNIT - V	
9	a)	Write a note on Equilibrium Numerical Aperture and discuss the	
-	,	applications.	[7]
	b)	What is WDM? Explain the basic principle of WDM?	[7]
		(OR)	
10	2)	Evaluin the how the nerver is coupling from source to fiber Discuss on	

10	a)	Explain the how the power is coupling from source to fiber. Discuss an	
		importance of acceptance angle during power coupling.	[7]
	b)	List out the types of error sources and explain about any two sources.	[7]

Set No. 1

R20

R20

Set No. 2

IV B.Tech I Semester Regular Examinations, January – 2024 **OPTICAL COMMUNICATION**

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Answer any FIVE Questions **ONE** Question from Each unit All Questions Carry Equal Marks *****

UNIT - I

1	a)	Draw the structure of an optical fiber and explain each part. Why the	
		cladding refractive index is less than core refractive index? Explain.	[7]
	b)	Calculate the cut-off wavelength for a SIF to exhibit single-mode-operation	
		when the core refractive index and radius are 1.48 and 5µm respectively,	
		with the relative index difference being 0.25%.	[7]
		(OR)	
2	a)	Draw the block diagram of an optical fiber communication system and	
		explain each part.	[7]
	b)	Define refractive index and explain the concept of Effective refractive index.	[7]
		UNIT - H	

UNIT - II

3	a)	Explain the designing and applications of Chalgenide glass fibers.	[7]
	b)	Explain the effect of dispersion on digital pulse transmitted in fiber with	
		suitable diagrams.	[7]
		(OR)	
4	a)	Discuss in detail about losses due to fiber bend.	[7]
	b)	Write a short note on Pulse broadening in Graded index fiber.	[7]

UNIT - III

5	a)	Explain about V-groove splicing technique with suitable diagrams.	[7]
	b)	Discuss about alignment Losses.	[7]
		(OR)	
6	a)	Explain the designing and working of Expanded beam connectors.	[7]
	b)	Discuss about core-diameter mismatch and numerical aperture mismatch.	[7]

R20

UNIT - IV

7	a)	In a 100ns pulse, 6×10^6 photons at a wavelength of 1330nm fall on an	
		InGaAs photo detector. On the average 5X10 ⁶ electron-hole pairs are	
		generated. Find the Quantum efficiency.	[7]
	b)	Explain the working principle of a surface emitting LED.	[7]
		(OR)	
8	a)	Discuss about threshold conditions in Laser diode.	[7]
	b)	List out the performances of different photo detectors.	[7]
		UNIT - V	
9	a)	Define Lambertian Pattern? Draw the radiation patterns radiated by different	
		optical sources.	[7]
	b)	Explain Attenuation measurement using cutback technique with suitable	
		diagrams.	[7]

(OR)

10	a)	Explain about time-domain intermodal dispersion measurement.	[7]
	b)	Classify and explain Line coding techniques used in Optical links.	[7]

Code No: **R204104A**

Set No. 3

IV B.Tech I Semester Regular Examinations, January - 2024 **OPTICAL COMMUNICATION**

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****

UNIT - I

1	a)	Draw the curve of Field amplitude distribution of a fundamental mode and	
		explain about Mode field diameter.	[7]
	b)	Discuss about Acceptance angle with supporting diagrams.	[7]
		(OR)	
2	a)	Explain the designing of Step Index fibers and Graded Index fibers.	[7]
	b)	A silica OF has a core refractive index of 1.47 and a cladding refractive	
		index of 1.45. Determine Acceptance angle of the fiber.	[7]
		UNIT - II	
3	a)	Explain about Halide material fibers.	[7]
	b)	Two polarization maintaining fibers operating at a wavelength of 1µm	
		have beat lengths of 0.7mm and 80m. Determine the modal birefringence	
		in each case.	[7]
		(OR)	
4	a)	When the mean optical power launched into an 8km length of fiber is	
		100μ W, the mean optical power at the fiber output is 4μ W. Determine	

(i) Overall signal attenuation (ii) Signal attenuation /km [7] [7]

b) Discuss about Intrinsic absorption.

UNIT - III

5	a)	Explain about electric arc fusion Splicing techniques with neat diagrams.	[7]
	b)	Discuss about Longitudinal and Lateral misalignments.	[7]
		(OR)	
6	a)	Draw the suitable diagrams for tube splicing and explain it.	[7]
	b)	Explain about Butt-joint connector technique.	[7]

R20

Set No. 3

UNIT - IV

7	a)	Define the terms homo- junctions, single hetero junctions and double	[7]
	b)	Explain the working principle of a PIN detector with supporting drawings.	[7]
		(OR)	
8	a)	A double hetero junction InGaAsP LED emitting at a peak wavelength of	
		1310nm has radiative and non radiative recombination times of 25 and	
		90ns respectively. The drive current is 35mA. Find the internal quantum	
		efficiency and the internal power level.	[7]
	b)	Define LASER? Explain the design principles of a LASER diode.	[7]
		UNIT - V	
9	a)	Define coupling efficiency. Derive an equation of power coupling from	
	,	LED to step index fiber.	[7]
	b)	Draw the point –to-point link and explain each component choice.	[7]
		(OR)	
10	a)	Define attenuation Loss. Explain any one of the technique to measure	
	,	attenuation.	[7]
	1 \		

b) Explain the differences between analog receivers and digital receiver systems. [7]

Time: 3 hours

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****

UNIT - I

1	a)	Define Maridional ray and Skew ray. Explain path transmission along fiber	
		with suitable diagrams.	[7]
	b)	A multi mode SIF has a relative refractive index difference of 1% and a core	
		refractive index of 1.50. The number of modes propagating at a wave length of	
		$1.3\mu m$ is 1100. Estimate the diameter of the core.	[7]
		(OR)	
2	a)	Describe with the aid of simple ray diagrams: (i) Multimode SIF and single	
		mode SIF (ii) Multimode GIF. Compare the advantages and disadvantages of	
		these two types for use as an optical channel.	[7]
	b)	Derive the Numerical Aperture equation of an optical fiber.	[7]

UNIT - II

3	a)	Explain the designing of Glass fibers based on doping concentrations.	[7]
	b)	A 6km OF link consists of multimode SIF with a core refractive index of 1.5	
		and a relative refractive index difference of 1%. Estimate (i) Delay difference	
		between slowest and fastest modes at the fiber outputs and (ii) $B_{T(max)}$	[7]
		(OR)	
4	a)	Write a notes on designing of Plastic optical fibers.	[7]
	b)	Classify the scattering Losses and explain any one type of loss.	[7]

UNIT - III

5	a)	Explain about straight-sleeve and tapered- sleeve alignment technique.	[7]
	b)	Discuss the return loss (RL) due to index-matched connection with	
		perpendicular fiber end faces.	[7]
		(OR)	
6	a)	Define reflection coefficient and discuss all possible conditions.	[7]
	b)	Discuss about Multimode fiber joints.	[7]

Code No: **R204104A**

Set No. 4

R20

IV B.Tech I Semester Regular Examinations, January – 2024 OPTICAL COMMUNICATION

(Electronics and Communication Engineering)

Max. Marks: 70

R20

Set No. 4

UNIT - IV

7	a)	Explain the working principle of an Edge emitting LED source with supporting diagrams.	[7]				
	b)	Define and derive an equation of External Quantum Efficiency of a Laser diode?	[7]				
		(OR)					
8	a)	Discuss about the term Power bandwidth product.	[7]				
	b)	Explain the function of APD device in optical detector.	[7]				
	UNIT - V						
9	a)	Discuss the radiation pattern of Laser diode and explain coupling mechanism.	[7]				
	b)	Explain Frequency-domain Intermodal dispersion technique.	[7]				
		(OR)					
10	a)	Draw the basic diagram of optical data link and explain the function of each					
		block.	[7]				
	b)	Which parameter can measure by using Eye pattern technique? Explain.	[7]				